Устойчивость к антибиотикам

Лекция № 12

Словарик

ШИРОКИЙ ≠ УЗКИЙ (спектр свойств).

ПОБОЧНЫЙ –не основной, сопутствующий чему-нибудь. Побочное действие лекарства.

ПОРАЗИТЬ –повредить, причинить ущерб здоровью. Поражение печени. Нарушение желудочно-кишечного тракта. Угнетение кроветворения.

ЧУВСТВИТЕЛЕН ≠УСТОЙЧИВ (к антибиотикам).

НЕЛЬЗЯ ≠ МОЖНО, НУЖНО (использовать антибиотики).

СНИЗИТЬ ДОЗУ АНТИБИОТИКА –снизить его токсичность.

СИЛЬНЫЕ АЛЛЕРГЕНЫ ≠ СЛАБЫЕ АЛЛЕРГЕНЫ.

ОТРИЦАТЕЛЬНОЕ ≠ ПОЛОЖИТЕЛЬНОЕ ВЛИЯНИЕ АНТИБИО.ТИКОВ

МАКСИМАЛЬНЫЙ ≠ МИНИМАЛЬНЫЙ.

МИНИМАЛЬНЫЙ = НАИМЕНЬШИЙ (вред).

МАКСИМАЛЬНЫЙ = НАИБОЛЬШИЙ (эффект).

НАИБОЛЕЕ БЕЗВРЕДНЫЕ = НАИМЕНЕЕ ВРЕДНЫЕ

Лекарственная устойчивость. Определение активности антибиотиков и чувствительности бактериальных культур к антибиотикам.

Помимо побочного действия антибиотиков на макроорганизм человека, антибиотики оказывают нежелательное воздействие и на микроорганизмы: 1) изменяются свойства микробов, что затрудняет их распознавание и диагностику заболеваний; 2) формируется приобретенная антибиотикоустойчивость (резистентность). Различают также врожденную или видовую устойчивость к антибиотикам. Она обусловлена видовыми свойствами, которые определяются геномом клетки (пенициллин не действует на микроорганизмы, у которых отсутствует пептидогликан в клеточной стенке). Циркуляция в природе антибиотикорезистентных бактерий создает трудности в лечении инфекционных заболеваний.

Для того, чтобы антибиотик оказал свое действие на микроорганизм необходимо следующее:

1) антибиотик должен проникнуть в клетку;

2) антибиотик должен вступить во взаимодействие с «мишенью» (структура, на которую должен действовать антибиотик, например, молекула ДНК или рибосомы клетки);

3) антибиотик должен сохранять свою активную структуру.

Если какое-либо из этих условий не будет выполнено, антибиотик не сможет оказать свое воздействие и у бактерий или других микробов развивается устойчивость к данному антибиотику.

Развитие устойчивости объясняется генетическими процессами, что затем проявляется через определенные биохимические механизмы. Например, устойчивость грибов р. Candida к нистатину связана с мутацией генов, которые отвечают за строение клеточной мембраны, которая является «мишенью» для действия нистатина.

Генетические процессы связаны с изменениями в геноме бактерий в результате мутаций и с наличием R-плазмид. В связи с этим различают:

1) хромосомную устойчивость- возникает в результате мутаций в геноме (хромосоме) и обычно бывает к одному антибиотику; такая устойчивость может передаваться по наследству при всех видах генетического обмена;

2) внехромосомную устойчивость (наблюдается значительно чаще) — связана с наличием в цитоплазме бактерий R–плазмиды, которая определяет множественную лекарственную устойчивостью (к нескольким антибиотикам); она может передаваться другим бактериям при конъюгации и трансформации.

Биохимические механизмы:

1) изменение проницаемости мембраны для антибиотика; например, снижение проницаемости наружной мембраны у грамотрицательных бактерий обеспечивает их устойчивость к ампициллину;

2) изменение «мишени»; например, устойчивость к стрептомицину связана с изменением рибосомального белка, с которым взаимодействует стрептомицин;

3) нарушение специфического транспорта антибиотика в бактериальную клетку; например, устойчивость к тетрациклину может быть связана с подавлением транспорта этого антибиотика в клетку;

4) превращение активной формы антибиотика в неактивную (основной биохимический механизм) при помощи ферментов; образование таких ферментов связано с R-плазмидами и транспозонами (отрезками ДНК). Важное значение имеют ферменты пептидазы, которые вызывают гидролиз антибиотиков. Например, ферменты лактамазы, разрушающие b–лактамное кольцо. К этим ферментам относится индуцибельный фермент пенициллиназа. 98% стафилококков образуют пенициллиназу, разрушающую пенициллин, поэтому они обладают устойчивостью к пенициллину. У E.coli и протея пенициллиназа является конститутивным ферментом, чем и объясняется их естественная резистентность к пенициллину. E. сoli образует фермент стрептомициназу, которая разрушает стрептомицин. Имеются бактерии, образующие ферменты, которые вызывают ацетилирование, фосфорилирование и другие изменения структуры антибиотиков, что приводит к потере их активности;

5) возникновение у микробов другого пути метаболизма вместо того пути, который нарушен антибиотиком.

Распространениюантибиотикорезистентности способствуютследующие условия:

1) широкое бесконтрольное применение антибиотиков для лечения (самолечение) и профилактики заболеваний, что способствует отбору резистентных форм, возникших в результате генетических процессов;

2) применение одних и тех же антибиотиков для лечения человека и животных (или в качестве консервантов пищевых продуктов).

Для предупреждения развития устойчивости к антибиотикам и для правильного лечения необходимо соблюдать следующие принципы.

1. Микробиологический: антибиотики применять по показаниям, предварительно определять антибиотикограмму.

2. Фармакологический: при назначении антибиотика необходимо определить правильную дозировку препарата, схему лечения, по возможности сочетать различные средства, чтобы предупреждать формирование резистентных форм.

3. Клинический: учитывать общее состояние больных, возраст, пол, состояние иммунной системы, сопутствующие заболевания, наличие беременности.

4. Эпидемиологический: знать, к каким антибиотикам устойчивы микроорганизмы в среде, окружающей больного (отделение, больница, географический регион).

5. Фармацевтический: необходимо учитывать срок годности, условия хранения препарата, так как при длительном и неправильном хранении образуются токсические продукты деградации антибиотика.

Устойчивость к антибиотикам – это термин, означающий потерю способности антибиотика уничтожать бактерии. Устойчивость к антибиотикам развивается под влиянием постоянных изменений (мутаций), которым подвергаются микроорганизмы.

Приобретенная устойчивость к антибиотикам возникает, когда, несмотря на использование антибиотика, бактерии продолжают размножаться, что требует применения нового антибиотика, более сильного, чем принимаемый ранее.

Откуда возникает устойчивость к антибиотикам?

Некоторые ученые называют изобретение антибиотиков величайшим открытием 20-го века. Они правы в этом, так как использование пенициллина положило конец многим инфекционным заболеваниям, которые являлись причиной высокой смертности в Европе. Сегодня антибиотики широко используются в борьбе с различными видами бактерий. К сожалению, доступность таких препаратов со временем превратилась в недостаток, спровоцировавший феномен, который называется устойчивостью к антибиотикам.

Антибиотиками злоупотребляют не только в ситуациях, когда нет показаний, например, принимая их при вирусных инфекциях или в легких случаях, не требующих антибиотикотерапии, но и неправильно выбирая препараты. Создание последующих поколений антибиотиков со все более широким спектром активности побуждает штаммы бактерий приобретать устойчивость к новым лекарствам и, таким образом, образуется замкнутый круг.

Классификация антибиотиков

Антибиотики – это группа антибактериальных препаратов, предназначенных для уничтожения или остановки размножения бактерий. Изначально антибиотики получали только естественным путем, сегодня существует огромное количество бактериостатиков, синтезированных в лабораториях (химиотерапевтические препараты). Из-за частой аллергии на пенициллин и устойчивости многочисленных бактериальных штаммов к его воздействию были разработаны различные группы антибиотиков без пенициллина.

Классификация антибиотиков

Есть несколько категорий, по которым можно классифицировать антибиотики. Первая делит их на натуральные и синтетические. Основным критерием разделения является химическая структура антибиотиков, основанная на их механизме действия против бактерий.

Существуют:

  • бета-лактамные антибиотики (пенициллины, цефалоспорины, карбапенемы, монобактамы);
  • пептидные антибиотики;
  • аминогликозиды;
  • тетрациклин;
  • макролиды.

Макролиды, тетрациклины, карбапенемы, цефалоспорины 3-го, 4-го и 5-го поколений и некоторые пенициллины обладают очень широким спектром действия. Они борются с так называемыми грамположительными и грамотрицательными бактериями, а также нетипичными микроорганизмами.

Разделение бактерий в соответствии с методом Грама основано на структуре бактериальной клеточной стенки и результирующем цвете, в который бактериальная клетка окрашивает при просмотре под микроскопом.

Цефалоспорины второго поколения, монобактамы и аминогликозиды ингибируют (подавляют) пролиферацию главным образом грамотрицательных бактерий, а цефалоспорины первого поколения предотвращают синтез грамположительных клеток.

Что такое устойчивость к антибиотикам?

Представьте себе ситуацию, когда программист борется с хакером. Чем более совершенную антивирусную программу создаст ИТ-специалист, тем более сложные вирусы будет создавать хакер. После каждого нового вируса, который проник в систему и не был обнаружен и удален существующей антивирусной программой, ИТ-специалист должен подготовить улучшенный алгоритм. Когда на рынке появляется последняя антивирусная программа, хакеры уже начинают работать над другим вирусом, устойчивым к этой программе.

Устойчивость к антибиотикам – аналогичное явление, только оно возникает, когда бактерии приобретают устойчивость. Чем лучше и эффективнее антибиотик представлен на рынке, тем больше бактерий сосредоточено на изменении своих свойств, нейтрализующих свойства нового препарата. Так возникает устойчивость к антибиотикам.

С этой целью бактерии могут изменять свой генетический материал таким образом, что устойчивость к новому антибиотику становится их постоянной характеристикой, передаваемой будущим поколениям. Если с последующей серией лекарств, созданных учеными, бактерии приобретают устойчивость к воздействиям, то мутации в бактериальной ДНК накапливаются и образуют бактериальные штаммы, устойчивые практически к большинству антибиотиков. Этот процесс является основой бактериальной устойчивости к антибиотикам.

Устойчивость к антибиотикам

Почему антибиотик может быть неэффективным?

Помимо описанного явления устойчивости бактерий к действию антибиотика, существует несколько причин, которые снижают эффективность препарата.

  • Антибиотикотерапия неэффективна в борьбе с вирусами. Вирусные инфекции часто дают сходные с бактериальными заболеваниями симптомы. В случае сомнений причины болезни основанием для диагноза должно стать проведение лабораторных анализов, исключающих или подтверждающих бактериальную инфекцию. При вирусной этиологии антибиотики не помогут, так как они не борются с вирусами.
  • Антибиотики широкого спектра действия снижают иммунитет. При бактериальном происхождении инфекции следует использовать соответствующий антибиотик. Но чаще всего врачи назначают антибиотики широкого спектра действия, например, амоксициллин, то есть те, которые борются с большинством бактерий. Эти препараты, в дополнение к несомненным преимуществам, имеют огромный недостаток – они также уничтожают здоровую бактериальную флору и, следовательно, ослабляют иммунитет.
  • Разные бактерии лечатся разными антибиотиками. Несмотря на широкий спектр антибактериальной активности, вещество, содержащееся в антибиотике, может быть неэффективно в отношении возбудителя, вызвавшего инфекцию. Это частая ситуация при инфекциях, вызванных нетипичными бактериями или устойчивыми к определенной группе антибиотиков.

Чтобы исключить подобные ошибки и получить максимальный эффект от лечения антибиотиками, перед назначением препаратов врач должен направить пациента на анализы. После того как специалист убедится, что имеет дело с бактериями, ему потребуются результаты антибиотикограммы, показывающей, как конкретный возбудитель реагирует на разные препараты.

Только после получения результата чувствительности бактерий к антибиотикам врач должен рекомендовать конкретное лекарство.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *