Уравнение 3 степени

Содержание

Как решать уравнения 3 степени

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Кубическое уравнение представляет собой уравнение третьего порядка и имеет следующий вид:

\ где \ Число \ именуется корнем кубического уравнения, если при его подстановке уравнение обращается в верное равенство.

Так же читайте нашу статью "Решить уравнение онлайн 9 класс решателем"

Данного рода уравнения всегда имеет 3 корня. Корни могут получиться как вещественными, так и комплексными. Если исходные данные позволяют подобрать один из корней кубического уравнения \ то можно кубический многочлен разделить на \ и решать получившееся квадратное уравнение.

Допустим, дано уравнение вида:

\

Для решения выполним группировку:

\

Проанализировав уравнение, видно, что \ — корень уравнения

Найдем корни полученного квадратного трехчлена \

\

\

\

\

Получим ответ: \

Где можно решить уравнение 3 степени онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе.

Уравнение третьей степени онлайн

Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Рассмотрим два примера кубических уравнений, которые калькулятор уравнений умеет без проблем решать с подробным решением:

Пример простого кубического уравнения

Первый пример будет простым:

49*x^3 — x = 0

После того, как вы нажмёте "Решить уравнение!", то вы получите ответ с подробным объяснением:

Дано уравнение:

преобразуем

Вынесем общий множитель x за скобки

получим:

тогда:

и также

получаем ур-ние

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:

___ \/ D — b x2 = ——— 2*a ___ -b — \/ D x3 = ———- 2*a

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то

(0)^2 — 4 * (49) * (-1) = 196

Т.к. D > 0, то уравнение имеет два корня.

x2 = (-b + sqrt(D)) / (2*a) x3 = (-b — sqrt(D)) / (2*a)

или

Получаем окончательный ответ для -x + 49*x^3 = 0:

x3 = -1/7

Второй простой пример кубического уравнения будет таким:

8 = (1/2 + 3*x)^3

Получим подробное решение:

Дано уравнение:

преобразуем:

Вынесем общий множитель за скобки

/ 2\ -9*(-1 + 2*x)*\7 + 12*x + 12*x / ——————————— = 0 8

Т.к.

Кубическое уравнение

правая часть ур-ния равна нулю, то решение у ур-ния будет, если хотя бы один из множителей в левой части ур-ния равен нулю.

Получим ур-ния

решаем получившиеся ур-ния:

Переносим свободные слагаемые (без x)

из левой части в правую, получим:

Разделим обе части ур-ния на -9/4

Получим ответ: x1 = 1/2

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:

___ \/ D — b x2 = ——— 2*a ___ -b — \/ D x3 = ———- 2*a

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то

(12)^2 — 4 * (12) * (7) = -192

Т.к. D < 0, то уравнение

не имеет вещественных корней,

но комплексные корни имеются.

x2 = (-b + sqrt(D)) / (2*a) x3 = (-b — sqrt(D)) / (2*a)

или

___ 1 I*\/ 3 x2 = — — + ——- 2 3 ___ 1 I*\/ 3 x3 = — — — ——- 2 3

Тогда, окончательный ответ:

___ 1 I*\/ 3 x2 = — — + ——- 2 3 ___ 1 I*\/ 3 x3 = — — — ——- 2 3

Пример сложного кубического уравнения

Третьим примером будет более сложный — возвратное кубическое уравнение онлайн.

5*x^3 -8*x^2 — 8*x + 5 = 0

Чтобы решить такое возвратное кубическое уравнение, то введите данное уравнение в калькулятор:

Дано уравнение:

2 3 5 — 8*x — 8*x + 5*x = 0

преобразуем

3 2 5*x + 5 — 8*x + 8 — 8*x — 8 = 0

или

3 3 2 2 5*x — 5*(-1) — 8*x — -8*(-1) — 8*x — 8 = 0 / 3 3\ / 2 2\ 5*\x — (-1) / — 8*\x — (-1) / — 8*(x + 1) = 0 / 2 2\ 5*(x + 1)*\x — x + (-1) / + -8*(x + 1)*(x — 1) — 8*(x + 1) = 0

Вынесем общий множитель 1 + x за скобки

получим:

/ / 2 2\ \ (x + 1)*\5*\x — x + (-1) / — 8*(x — 1) — 8/ = 0

или

/ 2\ (1 + x)*\5 — 13*x + 5*x / = 0

тогда:

и также

получаем ур-ние

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:

___ \/ D — b x2 = ——— 2*a ___ -b — \/ D x3 = ———- 2*a

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то

(-13)^2 — 4 * (5) * (5) = 69

Т.к. D > 0, то уравнение имеет два корня.

x2 = (-b + sqrt(D)) / (2*a) x3 = (-b — sqrt(D)) / (2*a)

или

____ 13 \/ 69 x2 = — + —— 10 10 ____ 13 \/ 69 x3 = — — —— 10 10

Получаем окончательный ответ для 5 — 8*x — 8*x^2 + 5*x^3 = 0:

____ 13 \/ 69 x2 = — + —— 10 10 ____ 13 \/ 69 x3 = — — —— 10 10

Опубликовано: Январь 30, 2017

Тэги: уравнение

Как решать уравнения 3 степени

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Кубическое уравнение представляет собой уравнение третьего порядка и имеет следующий вид:

\ где \ Число \ именуется корнем кубического уравнения, если при его подстановке уравнение обращается в верное равенство.

Так же читайте нашу статью "Решить уравнение онлайн 9 класс решателем"

Данного рода уравнения всегда имеет 3 корня. Корни могут получиться как вещественными, так и комплексными. Если исходные данные позволяют подобрать один из корней кубического уравнения \ то можно кубический многочлен разделить на \ и решать получившееся квадратное уравнение.

Допустим, дано уравнение вида:

\

Для решения выполним группировку:

\

Проанализировав уравнение, видно, что \ — корень уравнения

Найдем корни полученного квадратного трехчлена \

\

\

\

\

Получим ответ: \

Где можно решить уравнение 3 степени онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе.

Как решать уравнение третьей степени

Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Как решать уравнения 3 степени

Применение уравнений широко распространено в нашей жизни.

Как решать уравнения 3 степени

Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Кубическое уравнение представляет собой уравнение третьего порядка и имеет следующий вид:

\ где \ Число \ именуется корнем кубического уравнения, если при его подстановке уравнение обращается в верное равенство.

Так же читайте нашу статью "Решить уравнение онлайн 9 класс решателем"

Данного рода уравнения всегда имеет 3 корня. Корни могут получиться как вещественными, так и комплексными. Если исходные данные позволяют подобрать один из корней кубического уравнения \ то можно кубический многочлен разделить на \ и решать получившееся квадратное уравнение.

Допустим, дано уравнение вида:

\

Для решения выполним группировку:

\

Проанализировав уравнение, видно, что \ — корень уравнения

Найдем корни полученного квадратного трехчлена \

\

\

\

\

Получим ответ: \

Где можно решить уравнение 3 степени онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Формулы сокращенного умножения

Формулы сокращенного умножения.

Цели:

— Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.

— Применение формул сокращенного умножения при решении примеров.

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b   R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a — b)2 = a2 — 2ab + b2

3.

5. Уравнения третьей и четвёртой степени

Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 — b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a — b)3 = a3 — 3a2b + 3ab2 — b3

6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a2 — ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 — b3 = (a — b) (a2 + ab + b2)

Применение формул сокращенного умножения при решении примеров.

Пример 1.

Вычислить

а) (40+1)2

б) 982

Решение:

а) Используя формулу квадрата суммы двух выражений, имеем

(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681

б) Используя формулу квадрата разности двух выражений, получим

982 = (100 – 2)2 = 1002 — 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604

Пример 2.

Вычислить

Решение

Используя формулу разности квадратов двух выражений, получим

Пример 3.

Упростить выражение

(х — у)2 + (х + у)2

Решение

Воспользуемся формулами квадрата суммы и квадрата разности двух выражений

(х — у)2 + (х + у)2 = х2 — 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2

Формулы сокращенного умножения в одной таблице:

(a + b)2 = a2 + 2ab + b2
(a — b)2 = a2 — 2ab + b2
a2 — b2 = (a — b) (a+b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a — b)3 = a3 — 3a2b + 3ab2 — b3
a3 + b3 = (a + b) (a2 — ab + b2)
a3 — b3 = (a — b) (a2 + ab + b2)

Алгебраическое уравнение четвёртой степени.

1. Приведение уравнения к каноническому виду.

Сделаем замену переменного по формуле:

Получим уравнение:

Раскроем скобки:

Получим уравнение:

Уравнение приведено к каноническому виду:

         

2.

«Решение уравнений высших степеней». 9-й класс

Решение уравнения

Способ №1.
Решение при помощи разложения на два квадратных уравнения

Рассмотрим случай, когда q не равно нулю.

Верно тождество:

Поэтому:

Получили уравнение:

Выберем параметр z так, чтобы правая часть этого уравнения была полным квадратом относительно y. Для этого необходимо и достаточно, чтобы дискриминант из коэффициентов трехчлена относительно y, стоящего справа, обращался в нуль:

Мы получили кубическое уравнение.
Вывод формул кубичекого уравнения.
Если z — один из корней кубического уравнения:

то уравнение

запишется в виде:

Отсюда следует:

Необходимо решить два квадратных уравнения:

Получаем четыре корня:

Корни этих квадратных уравнений y1, y2, y3, y4 являются решением исходного уравнения

Рассмотрим случай, когда q=0

Уравнение

имеет четыре корня:

Способ №2.
Решение Декарта-Эйлера.

Обоснование этого способа решения уравнения четвёртой степени находится в стадии разработки.

3. Программа решения уравнения четвёртой степени.

Эта программа находит четыре корня уравнения четвёртой степени двумя способами

Способ №1.
Решение при помощи разложения на два квадратных уравнения

Если q не равно нулю, то кубическое уравнение

всегда имеет положительный действительный корень, так как при z=0 значение многочлена в левой части уравнения отрицательно: -q^2/8, а при стремлении z к плюс бесконечности значение многочлена в левой части уравнения также стремится к плюс бесконечности, то есть становится положительным при некотором положительном z=M, и так как непрерывная на отрезке функция принимает на интервале (0; M) любое промежуточное, в том числе и нулевое, значение, то существует положительный корень этого кубического уравнения. Таким положительным корнем является либо первый корень в программе решения кубического уравнения, где под знаком косинуса стоит аргумент F/3, так как Cos(F/3)0 при 0F3/2*Pi, если кубическое уравнение имеет три различных действительных корня, либо единственный действительный корень этого кубического уравнения.

Если какой-то из действительных корней кубического уравнения принимает нулевое значение, то решается биквадратное уравнение

Способ №2.
Решение Декарта-Эйлера.

После приведения алгебраического уравнения четвёртой степени к каноническому виду программа находит три корня кубического уравнения

Если это кубическое уравнение имеет три действительных положительных корня, то уравнение четвёртой степени имеет четыре действительных корня.

Если это кубическое уравнение имеет три действительных корня, один положительный и два отрицательных, то уравнение четвёртой степени имеет две пары комплексно-сопряжённых корней.

Если это кубическое уравнение имеет один положительный действительный корень и два комплексно сопряжённые корня, то уравнение четвёртой степени имеет два действительных и два комплексно-сопряжённых корня. Программа на javascript «Решение уравнения четвёртой степени Ax4+Bx3+Cx2+Dx+E=0»Программа «Решение уравнения четвёртой степени Ax4+Bx3+Cx2+Dx+E=0».Код программы «Решение уравнения четвёртой степени Ax4+Bx3+Cx2+Dx+E=0»Вывод корней кубического уравнения.На главную страницу.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *