Содержание
- Действия со степенями и корнями
- Свойства степени с натуральным показателем
- Степень с целым и дробным показателем
- Преобразования арифметических корней
- Правило умножение степеней с разными основаниями
- Действия со степенями и корнями
- Свойства степени с натуральным показателем
- Степень с целым и дробным показателем
- Преобразования арифметических корней
- Что делать со степенями при сложении и вычитании числа?
- Действия со степенями и корнями
- Свойства степени с натуральным показателем
- Степень с целым и дробным показателем
- Преобразования арифметических корней
- Алгебра – 7 класс. Умножение и деление степеней
- Действия со степенями и корнями
- Свойства степени с натуральным показателем
- Степень с целым и дробным показателем
- Преобразования арифметических корней
- Как умножить степени с разными основаниями и показателями?
- Действия со степенями и корнями
- Свойства степени с натуральным показателем
- Степень с целым и дробным показателем
- Преобразования арифметических корней
- Свойства степени
- Степень с натуральным показателем и её свойства
- Как умножать и делить степени? Что делают при умножении и делении степеней?
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где
(правило извлечения корня из произведения).
2. Если , то
(правило извлечения корня из дроби).
3. Если , то
(правило извлечения корня из корня).
4. Если , то
(правило возведения корня в степень).
5. Если , то
, где
, т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то
, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня.
Правило умножение степеней с разными основаниями
Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как
.
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где
(правило извлечения корня из произведения).
Что делать со степенями при сложении и вычитании числа?
Если , то
(правило извлечения корня из дроби).
3. Если , то
(правило извлечения корня из корня).
4. Если , то
(правило возведения корня в степень).
5. Если , то
, где
, т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то
, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как
.
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где
(правило извлечения корня из произведения).
2. Если , то
(правило извлечения корня из дроби).
3. Если , то
(правило извлечения корня из корня).
Алгебра – 7 класс. Умножение и деление степеней
Если , то
(правило возведения корня в степень).
5. Если , то
, где
, т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то
, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как
.
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где
(правило извлечения корня из произведения).
2. Если , то
(правило извлечения корня из дроби).
3. Если , то
(правило извлечения корня из корня).
Как умножить степени с разными основаниями и показателями?
Если , то
(правило возведения корня в степень).
5. Если , то
, где
, т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то
, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как
.
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где
(правило извлечения корня из произведения).
2. Если , то
(правило извлечения корня из дроби).
3. Если , то
(правило извлечения корня из корня).
4. Если , то
(правило возведения корня в степень).
5. Если , то
, где
, т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то
, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
Свойства степени
Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как
.
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Степень с натуральным показателем и её свойства
Степень с натуральным показателем и ее свойства.
Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:
an =
В выражении an :
— число а (повторяющийся множитель) называют основанием степени
— число n (показывающее сколько раз повторяется множитель) – показателем степени
Например:
25 = 2·2·2·2·2 = 32,
здесь:
2 – основание степени,
5 – показатель степени,
32 – значение степени
Отметим, что основание степени может быть любым числом.
Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).
Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108
Каждое число большее 10 можно записать в виде: а · 10n , где 1 < a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.
Например: 4578 = 4,578 · 103 ;
103000 = 1,03 · 105.
Свойства степени с натуральным показателем:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются
am · an = am + n
например: 71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 = 70.8
Как умножать и делить степени? Что делают при умножении и делении степеней?
При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются
am / an = am — n ,
где, m > n,
a ? 0
например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6
3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.
(am )n = a m · n
например: (23)2 = 2 3·2 = 26
4. При возведении в степень произведения в эту степень возводится каждый множитель
(a · b)n = an · b m ,
например:(2·3)3 = 2n · 3 m ,
5. При возведении в степень дроби в эту степень возводятся числитель и знаменатель
(a / b)n = an / bn
например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53