Способы решения логических задач

5.13. Как решать логические задачи?

Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:

  • средствами алгебры логики;
  • табличный;
  • с помощью рассуждений.

Познакомимся с ними поочередно.

I. Решение логических задач средствами алгебры логики

Обычно используется следующая схема решения:

  1. изучается условие задачи;
  2. вводится система обозначений для логических высказываний;
  3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;
  4. определяются значения истинности этой логической формулы;
  5. из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении.

Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах предстоящего этапа гонок.

Вот увидишь, Шумахер не придет первым, сказал Джон. Первым будет Хилл.

Да нет же, победителем будет, как всегда, Шумахер, воскликнул Ник. А об Алези и говорить нечего, ему не быть первым.

Питер, к которому обратился Ник, возмутился:

Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.

По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?

Решение. Введем обозначения для логических высказываний:

Ш победит Шумахер; Х победит Хилл; А победит Алези.

Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.

Зафиксируем высказывания каждого из друзей:

Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание

Высказывание истинно только при Ш=1, А=0, Х=0.

Ответ. Победителем этапа гонок стал Шумахер.

Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z.

Инструкция по выявлению неисправных узлов такова:

  1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z;
  2. если неисправен узел a, но исправен узел с, то загорается лампочка y;
  3. если неисправен узел с, но исправен узел b, загорается лампочка y, но не загорается лампочка x;
  4. если неисправен узел b, но исправен узел c, то загораются лампочки x и y или не загорается лампочка x;
  5. если горит лампочка х и при этом либо неисправен узел а, либо все три узла a, b, c исправны, то горит и лампочка y.

В пути компьютер сломался. На контрольной панели загорелась лампочка x. Тщательно изучив инструкцию, путешественник починил компьютер. Но с этого момента и до конца плавания его не оставляла тревога. Он понял, что инструкция несовершенна, и есть случаи, когда она ему не поможет.

Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции?

Решение. Введем обозначения для логических высказываний:

a  неисправен узел а;   x  горит лампочка х;

b  неисправен узел b;   y  горит лампочка y;

с  неисправен узел с;   z  горит лампочка z.

Правила 1–5 выражаются следующими формулами:

Формулы 1–5 истинны по условию, следовательно, их конъюнкция тоже истинна:

Выражая импликацию через дизъюнкцию и отрицание (напомним, что ), получаем:

Подставляя в это тождество конкретные значения истинности x=1, y=0, z=0, получаем:

Отсюда следует, что a=0, b=1, c=1.

Ответ на первый вопрос задачи: нужно заменить блоки b и c; блок а не требует замены. Ответ на второй вопрос задачи получите самостоятельно.

II. Решение логических задач табличным способом

При использовании этого способа условия, которые содержит задача, и результаты рассуждений фиксируются с помощью специально составленных таблиц.

Пример 3. В симфонический оркестр приняли на работу трёх музыкантов: Брауна, Смита и Вессона, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе.

Известно, что:

  1. Смит самый высокий;
  2. играющий на скрипке меньше ростом играющего на флейте;
  3. играющие на скрипке и флейте и Браун любят пиццу;
  4. когда между альтистом и трубачом возникает ссора, Смит мирит их;
  5. Браун не умеет играть ни на трубе, ни на гобое.

На каких инструментах играет каждый из музыкантов, если каждый владеет двумя инструментами?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как музыкантов трoе, инструментов шесть и каждый владеет только двумя инструментами, получается, что каждый музыкант играет на инструментах, которыми остальные не владеют.

Из условия 4 следует, что Смит не играет ни на альте, ни на трубе, а из условий 3 и 5, что Браун не умеет играть на скрипке, флейте, трубе и гобое. Следовательно, инструменты Брауна альт и кларнет. Занесем это в таблицу, а оставшиеся клетки столбцов "альт" и "кларнет" заполним нулями:

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит     0 0   0
Вессон     0 0    

Из таблицы видно, что на трубе может играть только Вессон.

Из условий 1 и 2 следует, что Смит не скрипач. Так как на скрипке не играет ни Браун, ни Смит, то скрипачом является Вессон. Оба инструмента, на которых играет Вессон, теперь определены, поэтому остальные клетки строки "Вессон" можно заполнить нулями:

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит 0   0 0   0
Вессон 1 0 0 0 0 1

Из таблицы видно, что играть на флейте и на гобое может только Смит.

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит 0 1 0 0 1 0
Вессон 1 0 0 0 0 1

Ответ: Браун играет на альте и кларнете, Смит на флейте и гобое, Вессон на скрипке и трубе.

Пример 4. Три одноклассника Влад, Тимур и Юра, встретились спустя 10 лет после окончания школы. Выяснилось, что один из них стал врачом, другой физиком, а третий юристом. Один полюбил туризм, другой бег, страсть третьего регби.

Юра сказал, что на туризм ему не хватает времени, хотя его сестра единственный врач в семье, заядлый турист. Врач сказал, что он разделяет увлечение коллеги.

Забавно, но у двоих из друзей в названиях их профессий и увлечений не встречается ни одна буква их имен.

Определите, кто чем любит заниматься в свободное время и у кого какая профессия.

Решение. Здесь исходные данные разбиваются на тройки (имя профессия увлечение).

Из слов Юры ясно, что он не увлекается туризмом и он не врач. Из слов врача следует, что он турист.

Имя Юра    
Профессия   врач  
Увлечение   туризм  

Буква "а", присутствующая в слове "врач", указывает на то, что Влад тоже не врач, следовательно врач Тимур. В его имени есть буквы "т" и "р", встречающиеся в слове "туризм", следовательно второй из друзей, в названиях профессии и увлечения которого не встречается ни одна буква его имени Юра. Юра не юрист и не регбист, так как в его имени содержатся буквы "ю" и "р". Следовательно, окончательно имеем:

Имя Юра Тимур Влад
Профессия физик врач юрист
Увлечение бег туризм регби

Ответ. Влад юрист и регбист, Тимур врач и турист, Юра физик и бегун.

Пример 5. Три дочери писательницы Дорис Кей Джуди, Айрис и Линда, тоже очень талантливы. Они приобрели известность в разных видах искусств пении, балете и кино. Все они живут в разных городах, поэтому Дорис часто звонит им в Париж, Рим и Чикаго.

Известно, что:

  1. Джуди живет не в Париже, а Линда не в Риме;
  2. парижанка не снимается в кино;
  3. та, кто живет в Риме, певица;
  4. Линда равнодушна к балету.

Где живет Айрис, и какова ее профессия?

Решение. Составим таблицу и отразим в ней условия 1 и 4, заполнив клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание:

Париж Рим Чикаго   Пение Балет Кино
0     Джуди      
      Айрис      
  0   Линда   0  

Далее рассуждаем следующим образом. Так как Линда живет не в Риме, то, согласно условию 3, она не певица. В клетку, соответствующую строке "Линда" и столбцу "Пение", ставим 0.

Как решать логические и математические задачи

Из таблицы сразу видно, что Линда киноактриса, а Джуди и Айрис не снимаются в кино.

Париж Рим Чикаго   Пение Балет Кино
0     Джуди     0
      Айрис     0
  0   Линда 0 0 1

Согласно условию 2, парижанка не снимается в кино, следовательно, Линда живет не в Париже. Но она живет и не в Риме. Следовательно, Линда живет в Чикаго. Так как Линда и Джуди живут не в Париже, там живет Айрис. Джуди живет в Риме и, согласно условию 3, является певицей. А так как Линда киноактриса, то Айрис балерина.

В результате постепенного заполнения получаем следующую таблицу:

Париж Рим Чикаго   Пение Балет Кино
0 0 1 Джуди 1 0 0
1 0 0 Айрис 0 1 0
0 0 1 Линда 0 0 1

Ответ. Айрис балерина. Она живет в Париже.

III. Решение логических задач с помощью рассуждений

Этим способом обычно решают несложные логические задачи.

Пример 6. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения:

  1. Вадим изучает китайский;
  2. Сергей не изучает китайский;
  3. Михаил не изучает арабский.

Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно.

Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно.

Остается считать верным третье утверждение, а первое и второе ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил японский, Вадим арабский.

Пример 7. В поездке пятеро друзей Антон, Борис, Вадим, Дима и Гриша, знакомились с попутчицей. Они предложили ей отгадать их фамилии, причём каждый из них высказал одно истинное и одно ложное утверждение:

Дима сказал: "Моя фамилия Мишин, а фамилия Бориса Хохлов". Антон сказал: "Мишин это моя фамилия, а фамилия Вадима Белкин". Борис сказал: "Фамилия Вадима Тихонов, а моя фамилия Мишин". Вадим сказал: "Моя фамилия Белкин, а фамилия Гриши Чехов". Гриша сказал: "Да, моя фамилия Чехов, а фамилия Антона Тихонов".

Какую фамилию носит каждый из друзей?

Решение. Обозначим высказывательную форму "юноша по имени А носит фамилию Б" как АБ, где буквы А и Б соответствуют начальным буквам имени и фамилии.

Зафиксируем высказывания каждого из друзей:

  1. ДМ   и   БХ;
  2. АМ   и   ВБ;
  3. ВТ   и   БМ;
  4. ВБ   и   ГЧ;
  5. ГЧ   и   АТ.

Допустим сначала, что истинно ДМ. Но, если истинно ДМ, то у Антона и у Бориса должны быть другие фамилии, значит АМ и БМ ложно. Но если АМ и БМ ложны, то должны быть истинны ВБ и ВТ, но ВБ и ВТ одновременно истинными быть не могут.

Значит остается другой случай: истинно БХ. Этот случай приводит к цепочке умозаключений:
 
БХ истинно БМ ложно ВТ истинно АТ ложно ГЧ истинно ВБ ложно АМ истинно.

Ответ: Борис Хохлов, Вадим Тихонов, Гриша Чехов, Антон Мишин, Дима Белкин.

Пример 8.Министры иностранных дел России, США и Китая обсудили за закрытыми дверями проекты соглашения о полном разоружении, представленные каждой из стран. Отвечая затем на вопрос журналистов: "Чей именно проект был принят?", министры дали такие ответы:

Один из них (самый откровенный) оба раза говорил правду; второй (самый скрытный) оба раза говорил неправду, третий (осторожный) один раз сказал правду, а другой раз неправду.

Определите, представителями каких стран являются откровенный, скрытный и осторожный министры.

Решение. Для удобства записи пронумеруем высказывания дипломатов:

Узнаем, кто из министров самый откровенный.

Если это российский министр, то из справедливости (1) и (2) следует, что победил китайский проект. Но тогда оба утверждения министра США тоже справедливы, чего не может быть по условию.

Если самый откровенный министр США, то тогда вновь получаем, что победил китайский проект, значит оба утверждения российского министра тоже верны, чего не может быть по условию.

Получается, что наиболее откровенным был китайский министр. Действительно, из того, что (5) и (6) справедливы, cледует, что победил российский проект. А тогда получается, что из двух утверждений российского министра первое ложно, а второе верно. Оба же утверждения министра США неверны.

Ответ: Откровеннее был китайский министр, осторожнее российский, скрытнее министр США.

Новосибирский государственный педагогический университет.

Математический факультет.

Кафедра геометрии и МПМ.

Логические задачи и методы их решения

Курсовая работа по математике.

Выполнила: студентка 35гр. Голобокова О.В.

Новосибирск 2009 г.

Введение

1. Типы и способы решения логических задач

1.1 Задачи типа «Кто есть кто?»

1.2 Тактические задачи

1.3 Задачи на нахождение пересечения множеств или их объединения

1.4 Буквенные ребусы и примеры со звездочками

1.5 Истинностные задачи

1.6 Задачи типа «Шляпы»

1.7 Задачи типа «Два города»

Заключение

Список литературы

ВВЕДЕНИЕ

Тема моей курсовой работы: «Логические задачи и методы их решения».

Для расширения основного курса желательно выбирать темы, срособствующие развитию общеучебных умений школьников, обладающие значительным развивающим потенциалом. Привлекательными занятия по выбору сделает система методов организации внеурочной учебной деятельности школьника, использование групповых и индивидуальных занятий.

Содержательная и интересно поставленная внеурочная работа по математике позволяет выявить математически одаренных школьников, развить культуру мышления учащихся, разумно организовать их время.

Развитию творческой активности, инициативы, любознательности, смекалки способствует решение нестандартных задач.

У любого нормального ребенка есть стремление к познанию, желание проверить себя. Чаще всего способности школьников так иостаются не раскрыты для них самих, они не уверены в своих силах, равнодушны к математике.

Задачи повышенной трудности, в решении которых следует опираться на твердое знание изученных на уроках математических фактов, не следует сразу предлагать этим учащимся. Задачи должны быть доступны, будить сообразительность, овладевать их вниманием, удивлять, пробуждать их к активной фантазии и самостоятельному решению.

Несмотря на то, что школьный курс математики содержит большое количество интересных задач, многие полезные задачи не рассматриваются.

К эти задачам можно отнести логические задачи. Эти задачи могут быть рассмотрены на кружковых и факультативных занятиях, начиная с 5 класса.

1. Типы и способы решения логических задач

1.1 Задачи типа «Кто есть кто?»

Задачи типа «Кто есть кто?» очень разнообразны по сложности, содержанию и способности решения. Они, несомненно, представляют интерес для математического кружка.

а) Метод графов

Один из способов решения – решение с помощью графов. Граф – это несколько точек, часть которых соеденены друг с другом отрезками или стрелками (в таком случае граф называется ориентированным). Пусть нам требуется установить соответствие между двумя типами объектов (множествами). Точками обозначаются элементы множеств, а соответствие между ними – отрезками. Штриховой отрезок будет объеденять два элемента, не соответствующих друг другу.

Задача 1. Леня, Женя и Миша имеют фамилию Орлов, Соколов и Ястребов.

Решение логических задач табличным способом

Какую фамилию имеет каждый мальчик, если Женя, Миша и Соколов – члены математического кружка, а Миша и Ястребов занимаются музыкой?

Решение. Решить задачу просто, если учесть, что:

1. Каждому элементу одного множества обязательно соответствует элемент другого множества,но только один (у каждого мальчика есть фамилия и фамилии у мальчиков разные).

2. Если элемент каждого множества соединен со всеми элементами (кроме одного) другого множества штриховыми отрезками, то с последним он соединен сплошным отрезком.

Вместо сплошных штриховых отрезков можно использовать цветные, в таком случае решение получается более красочным, больше нравится младшим школьникам (рис. 1.).

Женя МишаЛеня

ЯстребовСоколовОрлов

Рис. 1.

Таким же способом можно находить соответствие между тремя множествами.

Задача 2. Три товарища, Иван, Дмитрий и Степан преподают различные предметы в школах Москвы, Санкт-Петербурга и Киева. Известно, что Иван работает не в Москве, а Дмитрий – не в Санкт-Петербурге; москвич преподает химию. Дмитрий не биолог. Какой предмет, и в каком городе преподает каждый товарищ?

Решение. Сначала все условия наносятся на схему. Решение же сводится к нахождению трех сплошных треугольников с вершинами в разных множествах (рис.2.).

Иван Дмитрий Степан

Москва

Химия

Санкт-Петербург

Биология

Физика Киев

Рис. 2.

При решении мы можем получить треугольники трех видов:

а) все стороны являются сплошными отрезками (решение зедачи);

б) одна сторона – сплошной отрезок, а другие – штриховые;

в) все стороны – штриховые отрезки.

Таким образом, нельзя получить треугольник, у которого бы две стороны были сплошными отрезками, а третья – штриховой отрезок. Это легко доказать на примере данной задачи.

Рассмотрим треугольник: химия – Дмитрий – Санкт-Петербург. Если предположим, что третья сторона – сплошной отрезок, то получаем следующие высказывания

-«Дмитрий преподает химию»;

-«Тот, кто преподает химию, живет в Санкт-Петпрбурге»;

-«Дмитрий не живёт в Санкт-Петербурге»;

Но из второго и третьего высказывания следует, что Дмитрий не преподает химию (отрицание первого высказывания). Значит, отрезок Дмитрий – химия штриховой, что соответствует высказыванию: «Дмитрий не преподает химию».

Задача решается автоматически: построением треугольников. От условия задачи, после внесения его на схему, можно отвлечься (рис. 3).

Иван Дмитрий Стапан

Москва

Химия

Санкт-Петербург

биология

физика Киев

рис.3.

При обучении школьников логически грамотно мыслить несомненную методическую ценность представляют задачи с неоднозначными ответами и избыточными условиями. Такие задачи чаще всего ставят учащихся в тупик. Графы, представыленные точками и отрезками, позволяют справиться с такими трудностями и выявлять структурные особенности задач.

Задача 3. Маша, Женя, Лида и Катя умеют играть на различных инструментах (виолончели, рояле, гитае и скрипке). Они же владеют различными иностранными языками (английским, французским, немецким, испанским), но каждая только одним. Известно, что девушка, которая играет на гитаре, говорит по- испански, Лида не играет ни на скрипке, ни на виолончели и не знает английского языка, так же как и Маша. Девушка, которая говорит по-немецки, не умеет играть на виолончели, Женя знает французский язык, но не умеет играть на скрипке. Кто же из девушек какой язык знает и на каком инструменте играет?

Решение. Обозначим имена: М, Ж, Л, К; музыкальные инструменты: В, Г, Р, С; иностранные языки: А, Ф, Н, И. Получаем два частичных решения задачи: К-С-А и Ж-В-Ф (рис. 4).

М Ж Л К

В А

Р Ф

Г Н

С И

Рис.4.

Далее же задача допускает два решения: М-Р-Н, Л-Г-И или М-Г-И, Л-Р-Н. Любое из этих решений не противоречит условию задачи.

б) Табличный способ

Второй способ решения логических задач – с помощью таблиц – также прост и нагляден, но его можно использовать только в том случае, когда требуется установить соответствие между двумя множествами. Он более удобен, когда множества имеют по пять-шесть элементов.

Задача 4. «Город мастеров». В нашем городе живут 5 друзей: Иванов, Петров, Сидорчук, Веселов и Гришин. У них разные профессии: маляр, мельник, парикмахер, почтальон, плотник. Но я точно знаю, что Петров и Гришин никогда не держали в руках малярной кисти, а Иванов и Гришин давно собираются посетить мельницу, где работает их товарищ. Петров и Веселов живут в одном доме с почтальоном. Иванов и Петров каждое воскресенье играют в городки с плотником и маляром, а Гришин и Веселов по субботам встречаются в парикмахерской, где работает их друг. Почтальон же предпочитает бриться дома. Помогите мне установить профессию каждого из друзей.

Решение. Решая задачу, мы заведомо знаем, что у каждого товарища одна фамилия и одна профессия (и у всех разные).

Правило 1: В каждой строке и в каждом столбце таблицы может стоять только один знак соответствия (например «+»).

Правило 2: Если в строке (или столбце) все «места», кроме одного, заняты элементарным запретом (знак несоответствия, например «-»), то на свободное место нужно поставить знак «+»; если в строке (или столбце) уже есть знак «+», то остальные места должны быть заняты знаком «-».

Начертив таблицу, нужно разместить в ней известные запреты исходя из условия задачи. Если ребята затрудняются сразу заполнить таблицу, то можно помочь им наводящими вопросами. Правила же выводятся обычно самостоятельно, интуитивно. Нужно только заострить на них внимание школьников.

Заполнив по условию задачи таблицу, сразу получем два типичных решения: Гришин – плотник, а Иванов – парикмахер (рис. 5).

Дальше ответ получается автоматически, но этот «автоматизм» можно «перевести» на язык логических рассуждений. Такой «перевод» и интересен, и помогает увидеть, откуда берется решение.

Рис.5.

После того, как произошло «сужение информации» и точно установлено, что Гришин – плотник, а Иванов – парикмахер, рассуждать можно так: т.к Иванов не почтальон (он парикмахер) и из условий задачи следует, что Гришин, Петров и Веселов не работают почтальоном, значит, Сидорчук – почтальон (а значит, не маляр и не мельник); мельником может быть только Петров, а Веселов – маляром. Эта задача предполагает только одно решение.

5.13. Как решать логические задачи?

Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:

  • средствами алгебры логики;
  • табличный;
  • с помощью рассуждений.

Познакомимся с ними поочередно.

I. Решение логических задач средствами алгебры логики

Обычно используется следующая схема решения:

  1. изучается условие задачи;
  2. вводится система обозначений для логических высказываний;
  3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;
  4. определяются значения истинности этой логической формулы;
  5. из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении.

Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах предстоящего этапа гонок.

Вот увидишь, Шумахер не придет первым, сказал Джон. Первым будет Хилл.

Да нет же, победителем будет, как всегда, Шумахер, воскликнул Ник. А об Алези и говорить нечего, ему не быть первым.

Питер, к которому обратился Ник, возмутился:

Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.

По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?

Решение. Введем обозначения для логических высказываний:

Ш победит Шумахер; Х победит Хилл; А победит Алези.

Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.

Зафиксируем высказывания каждого из друзей:

Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание

Высказывание истинно только при Ш=1, А=0, Х=0.

Ответ. Победителем этапа гонок стал Шумахер.

Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z.

Инструкция по выявлению неисправных узлов такова:

  1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z;
  2. если неисправен узел a, но исправен узел с, то загорается лампочка y;
  3. если неисправен узел с, но исправен узел b, загорается лампочка y, но не загорается лампочка x;
  4. если неисправен узел b, но исправен узел c, то загораются лампочки x и y или не загорается лампочка x;
  5. если горит лампочка х и при этом либо неисправен узел а, либо все три узла a, b, c исправны, то горит и лампочка y.

В пути компьютер сломался. На контрольной панели загорелась лампочка x. Тщательно изучив инструкцию, путешественник починил компьютер. Но с этого момента и до конца плавания его не оставляла тревога. Он понял, что инструкция несовершенна, и есть случаи, когда она ему не поможет.

Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции?

Решение. Введем обозначения для логических высказываний:

a  неисправен узел а;   x  горит лампочка х;

b  неисправен узел b;   y  горит лампочка y;

с  неисправен узел с;   z  горит лампочка z.

Правила 1–5 выражаются следующими формулами:

Формулы 1–5 истинны по условию, следовательно, их конъюнкция тоже истинна:

Выражая импликацию через дизъюнкцию и отрицание (напомним, что ), получаем:

Подставляя в это тождество конкретные значения истинности x=1, y=0, z=0, получаем:

Отсюда следует, что a=0, b=1, c=1.

Ответ на первый вопрос задачи: нужно заменить блоки b и c; блок а не требует замены. Ответ на второй вопрос задачи получите самостоятельно.

II. Решение логических задач табличным способом

При использовании этого способа условия, которые содержит задача, и результаты рассуждений фиксируются с помощью специально составленных таблиц.

Пример 3. В симфонический оркестр приняли на работу трёх музыкантов: Брауна, Смита и Вессона, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе.

Известно, что:

  1. Смит самый высокий;
  2. играющий на скрипке меньше ростом играющего на флейте;
  3. играющие на скрипке и флейте и Браун любят пиццу;
  4. когда между альтистом и трубачом возникает ссора, Смит мирит их;
  5. Браун не умеет играть ни на трубе, ни на гобое.

На каких инструментах играет каждый из музыкантов, если каждый владеет двумя инструментами?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как музыкантов трoе, инструментов шесть и каждый владеет только двумя инструментами, получается, что каждый музыкант играет на инструментах, которыми остальные не владеют.

Из условия 4 следует, что Смит не играет ни на альте, ни на трубе, а из условий 3 и 5, что Браун не умеет играть на скрипке, флейте, трубе и гобое. Следовательно, инструменты Брауна альт и кларнет. Занесем это в таблицу, а оставшиеся клетки столбцов "альт" и "кларнет" заполним нулями:

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит     0 0   0
Вессон     0 0    

Из таблицы видно, что на трубе может играть только Вессон.

Из условий 1 и 2 следует, что Смит не скрипач. Так как на скрипке не играет ни Браун, ни Смит, то скрипачом является Вессон. Оба инструмента, на которых играет Вессон, теперь определены, поэтому остальные клетки строки "Вессон" можно заполнить нулями:

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит 0   0 0   0
Вессон 1 0 0 0 0 1

Из таблицы видно, что играть на флейте и на гобое может только Смит.

  скрипка флейта альт кларнет гобой труба
Браун 0 0 1 1 0 0
Смит 0 1 0 0 1 0
Вессон 1 0 0 0 0 1

Ответ: Браун играет на альте и кларнете, Смит на флейте и гобое, Вессон на скрипке и трубе.

Пример 4. Три одноклассника Влад, Тимур и Юра, встретились спустя 10 лет после окончания школы. Выяснилось, что один из них стал врачом, другой физиком, а третий юристом. Один полюбил туризм, другой бег, страсть третьего регби.

Юра сказал, что на туризм ему не хватает времени, хотя его сестра единственный врач в семье, заядлый турист. Врач сказал, что он разделяет увлечение коллеги.

Забавно, но у двоих из друзей в названиях их профессий и увлечений не встречается ни одна буква их имен.

Определите, кто чем любит заниматься в свободное время и у кого какая профессия.

Решение. Здесь исходные данные разбиваются на тройки (имя профессия увлечение).

Из слов Юры ясно, что он не увлекается туризмом и он не врач. Из слов врача следует, что он турист.

Имя Юра    
Профессия   врач  
Увлечение   туризм  

Буква "а", присутствующая в слове "врач", указывает на то, что Влад тоже не врач, следовательно врач Тимур. В его имени есть буквы "т" и "р", встречающиеся в слове "туризм", следовательно второй из друзей, в названиях профессии и увлечения которого не встречается ни одна буква его имени Юра. Юра не юрист и не регбист, так как в его имени содержатся буквы "ю" и "р". Следовательно, окончательно имеем:

Имя Юра Тимур Влад
Профессия физик врач юрист
Увлечение бег туризм регби

Ответ. Влад юрист и регбист, Тимур врач и турист, Юра физик и бегун.

Пример 5. Три дочери писательницы Дорис Кей Джуди, Айрис и Линда, тоже очень талантливы. Они приобрели известность в разных видах искусств пении, балете и кино. Все они живут в разных городах, поэтому Дорис часто звонит им в Париж, Рим и Чикаго.

Известно, что:

  1. Джуди живет не в Париже, а Линда не в Риме;
  2. парижанка не снимается в кино;
  3. та, кто живет в Риме, певица;
  4. Линда равнодушна к балету.

Где живет Айрис, и какова ее профессия?

Решение. Составим таблицу и отразим в ней условия 1 и 4, заполнив клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание:

Париж Рим Чикаго   Пение Балет Кино
0     Джуди      
      Айрис      
  0   Линда   0  

Далее рассуждаем следующим образом. Так как Линда живет не в Риме, то, согласно условию 3, она не певица. В клетку, соответствующую строке "Линда" и столбцу "Пение", ставим 0.

Из таблицы сразу видно, что Линда киноактриса, а Джуди и Айрис не снимаются в кино.

Париж Рим Чикаго   Пение Балет Кино
0     Джуди     0
      Айрис     0
  0   Линда 0 0 1

Согласно условию 2, парижанка не снимается в кино, следовательно, Линда живет не в Париже. Но она живет и не в Риме. Следовательно, Линда живет в Чикаго. Так как Линда и Джуди живут не в Париже, там живет Айрис.

Методы решения логических задач

Джуди живет в Риме и, согласно условию 3, является певицей. А так как Линда киноактриса, то Айрис балерина.

В результате постепенного заполнения получаем следующую таблицу:

Париж Рим Чикаго   Пение Балет Кино
0 0 1 Джуди 1 0 0
1 0 0 Айрис 0 1 0
0 0 1 Линда 0 0 1

Ответ. Айрис балерина. Она живет в Париже.

III. Решение логических задач с помощью рассуждений

Этим способом обычно решают несложные логические задачи.

Пример 6. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения:

  1. Вадим изучает китайский;
  2. Сергей не изучает китайский;
  3. Михаил не изучает арабский.

Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно.

Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно.

Остается считать верным третье утверждение, а первое и второе ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил японский, Вадим арабский.

Пример 7. В поездке пятеро друзей Антон, Борис, Вадим, Дима и Гриша, знакомились с попутчицей. Они предложили ей отгадать их фамилии, причём каждый из них высказал одно истинное и одно ложное утверждение:

Дима сказал: "Моя фамилия Мишин, а фамилия Бориса Хохлов". Антон сказал: "Мишин это моя фамилия, а фамилия Вадима Белкин". Борис сказал: "Фамилия Вадима Тихонов, а моя фамилия Мишин". Вадим сказал: "Моя фамилия Белкин, а фамилия Гриши Чехов". Гриша сказал: "Да, моя фамилия Чехов, а фамилия Антона Тихонов".

Какую фамилию носит каждый из друзей?

Решение. Обозначим высказывательную форму "юноша по имени А носит фамилию Б" как АБ, где буквы А и Б соответствуют начальным буквам имени и фамилии.

Зафиксируем высказывания каждого из друзей:

  1. ДМ   и   БХ;
  2. АМ   и   ВБ;
  3. ВТ   и   БМ;
  4. ВБ   и   ГЧ;
  5. ГЧ   и   АТ.

Допустим сначала, что истинно ДМ. Но, если истинно ДМ, то у Антона и у Бориса должны быть другие фамилии, значит АМ и БМ ложно. Но если АМ и БМ ложны, то должны быть истинны ВБ и ВТ, но ВБ и ВТ одновременно истинными быть не могут.

Значит остается другой случай: истинно БХ. Этот случай приводит к цепочке умозаключений:
 
БХ истинно БМ ложно ВТ истинно АТ ложно ГЧ истинно ВБ ложно АМ истинно.

Ответ: Борис Хохлов, Вадим Тихонов, Гриша Чехов, Антон Мишин, Дима Белкин.

Пример 8.Министры иностранных дел России, США и Китая обсудили за закрытыми дверями проекты соглашения о полном разоружении, представленные каждой из стран. Отвечая затем на вопрос журналистов: "Чей именно проект был принят?", министры дали такие ответы:

Один из них (самый откровенный) оба раза говорил правду; второй (самый скрытный) оба раза говорил неправду, третий (осторожный) один раз сказал правду, а другой раз неправду.

Определите, представителями каких стран являются откровенный, скрытный и осторожный министры.

Решение. Для удобства записи пронумеруем высказывания дипломатов:

Узнаем, кто из министров самый откровенный.

Если это российский министр, то из справедливости (1) и (2) следует, что победил китайский проект. Но тогда оба утверждения министра США тоже справедливы, чего не может быть по условию.

Если самый откровенный министр США, то тогда вновь получаем, что победил китайский проект, значит оба утверждения российского министра тоже верны, чего не может быть по условию.

Получается, что наиболее откровенным был китайский министр. Действительно, из того, что (5) и (6) справедливы, cледует, что победил российский проект. А тогда получается, что из двух утверждений российского министра первое ложно, а второе верно. Оба же утверждения министра США неверны.

Ответ: Откровеннее был китайский министр, осторожнее российский, скрытнее министр США.

Внеурочная деятельность

Общеинтеллектуальное направление

ПРИМЕРНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

ВНЕКЛАССНЫХ ЗАНЯТИЙ

по математике и информатике

«Учимся решать логические задачи»

занятия

Тема и цель занятия

Номера заданий

Тема: «Истина». «Ложь».

Цель: Учить анализировать тексты. Познакомить с понятиями: «ложно», «истинно», «верно», «неверно». Развитие умения ориентироваться в пространстве.

Тема: Знакомство с таблицей.

Цель: Учить строить истинные высказывания, развивать умения делать выводы, учить оценивать истинность и ложность высказываний. Познакомить с табличным способом решения логических задач.

Тема: Построение истинных высказываний.

Цель: Учить строить истинные предложения на сравнение по цвету и размеру.

Тема: Работа с графической моделью.

Цель: Учить соотносить текстовое описание с картинкой, устанавливать соответствия между текстом и иллюстрацией. Формировать умение иллюстрировать текстовые описания.

Тема: Работа с схематической моделью.

Цель: Познакомить с графической моделью. Учить соотносить текстовые описания и графические модели, устанавливать соответствие между текстом и схемой. Продолжить формирование умения иллюстрировать текстовые описания. Познакомить со способом решения логических задач на основе выдвижения всевозможных предположений (гипотез) и их проверки.

Тема: Решение логических задач табличным способом.

Цель: Учить табличному способу решения логических задач. Учить устанавливать соответствие между элементами множеств по логическому условию. Формировать умение оценивать истинность и ложность высказываний по заданным условиям.

7 -8

Тема: Работа с ложными высказываниями.

Цель: Знакомство с операцией отрицания. Обучение построению отрицаний высказываний, выводов. Учить на основе установления соответствий между картинкой и текстовым описанием оценивать истинность высказываний.

Тема: Отрицание высказывания.

Цель: Обучение решению логических задач табличным способом. Формирование умения делать умозаключения на основе построения отрицания высказываний.

Тема: Моделирование как способ решения логических задач.

Цель: Учить построению графической модели по текстовому условию логической задачи. Знакомство с графическим способом решения логических задач. Продолжить формирование умения делать умозаключения на основе построения отрицания высказываний.

Тема: Установление истинности/ложности высказываний.

Цель: Учить оценивать истинность высказываний по графическому условию. Формировать умения достраивать графические модели по логическому условию.

Тема: Решение логических задач методом исключения.

Цель: Продолжить формировать умения решать логические задачи табличным способом на основе построения отрицаний.

Тема: Работа с текстовой и графической информацией.

Цель: Формировать умения устанавливать соответствие между текстом и графическими схемами. Продолжить формировать умения построения истинных высказываний.

Тема: Построение цепочки умозаключений.

Цель: Учить строить умозаключения по предложенной схеме, делать выводы из данных условий, проверять правильность решения логической задачи табличным способом.

Тема: Графическая и табличная интерпретация текста

Цель: Знакомство с графическим и табличным способами представления информации. Учить делать выводы по табличным данным. Учить оценивать истинность высказываний и их отрицаний.

24,26

Тема: Выдвижение гипотез.

Цель: Пропедевтическая работа по формированию умения решать логические задачи способом выдвижения и оценки всевозможных гипотез.

Тема: Построение умозаключений

Цель: Формировать умение решать логические задачи на основе построения цепочки умозаключений. Учить анализировать высказывания со связкой «если…, то…» и делать правильные выводы.

Самостоятельная работа

33, 35

20 -21

Тема: Построение цепочки рассуждений

Цель: Продолжить формирование умения решать логические задачи на основе построения цепочки умозаключений, анализировать высказывания со связкой «если…, то…» и делать правильные выводы.

Тема: Планирование действий. Наглядное представление процессов.

Цель: Познакомить с логическими задачами на перевозки и табличной формой записи решения задач. Научить строить модель процесса перевозки.

Тема: Составление линейного алгоритма.

Цель: Формировать умение решать логические задачи на перевозки способом перебора и анализа всевозможных действий на каждом этапе; формировать умения решать логические задачи на основе построения отрицаний.

Тема: Решение логических задач исследовательским методом.

Цель: Познакомить с понятием «гипотеза». Учить выдвигать и проверять гипотезы. Познакомить со способом решения логических задач на основе выдвижения и анализа всевозможных гипотез. .

Тема: Решение логических задач различными способами.

Цель: Формирование умения решать логические задачи способом построения цепочки умозаключений и табличным способом.

Тема: Решение логических задач на пространственные отношения

Цель: Учить решать логические задачи на пространственные отношения между предметами табличным и графическим способами. Формирование умений оценивать истинность высказываний на основе построения умозаключений из условий.

Тема: Решение логических задач через выдвижение гипотез.

Цель: Формирование умений решать логические задачи на основе выдвижения и анализа всевозможных гипотез.

Тема: Наглядное представление текстовых данных.

Цель: Формирование умения соотносить графические модели с текстовым условием, решать логические задачи графическим способом. Учить построению умозаключений.

Тема: Нахождение логических ошибок в рассуждениях.

Цель: Учить находить ошибки в рассуждениях.

Составление логических задач

Составление логических задач

Пособие для учащихся:

Истомина Н.Б. Тихонова Н.Б. Учимся решать логические задачи. Издательство «Ассоциация ХХ1 век», 2010, 2011

Для учителя:

Истомина Н.Б., Тихонова Н.Б. Развитие универсальных учебных действий у младших школьников в процессе решения логических задач.

Логические и занимательные задачи (300 задач)

// Начальная школа, 2011.- №6.- С.30-35.

Если Вы являетесь автором этой работы и хотите отредактировать, либо удалить ее с сайта — свяжитесь, пожалуйста, с нами.

Посмотрите также:

— КТП по русскому языку 2 класс Школа России
— КТП по окружающему миру 2 класс Школа России
— Внеурочная деятельность "Веселый счет" (2 класс)
— Тематическое планирование. Литературное чтение. 2 класс
— Разработка рабочей программы по ИЗО 2 класс УМК "Перспектива"
— Рабочая программа по литературному чтению 2 класс.Начальная школа 21 века.
— Рабочая программа по изо 2 класс. Начальная школа 21 века.
— Рабочая программа по технологии 2 класс. Начальная школа 21 века.
— Рабочая программа по окружающему миру 2 класс. Начальная школа 21 века.
— Рабочая программа по математике 2 класс.Начальная школа 21 века.



Основные виды логических задач и способы их решения.

Логические задачи – это неотъемлемая часть сегодняшнего дня. Они не покидают ученика в течение всего обучения в школе и прощаются с ним при сдаче Единого Государственного экзамена.

Есть люди, для которых решение логической задачи — увлекательная, но несложная задача. Их мозг как луч прожектора сразу освещает все хитроумные построения, и к правильному ответу он приходит необычайно быстро. Замечательно, что при этом он и не могут объяснить, как они пришли к решению. "Ну это же очевидно, ясно", — говорят они. "Ведь если … " — и они начинают легко распутывать клубок противоречивых высказываний.

Примеры решения логических задач

"Действительно, все ясно", — говорит слушатель, огорченный тем, что он сам не увидел очевидного рассуждения. Согласитесь, что такое же ощущение часто возникает при чтении детективов.

В своей педагогической практике я не раз сталкивалась с тем, что эти задачи вызывают массу трудностей у школьников. Чтобы помочь справиться с этими задачами, мною была организованна инициативная группа учащихся по изучению типов логических задач и способов их решения. Целью работы нашей является изучение видов логических задач и методов их решения .

Для достижения цели нам необходимо решить следующие задачи:

  1. Познакомиться с основными видами логических задач;
  2. Изучить методы решения логических задач
  3. Подготовить подборку наиболее интересных задач для успешной сдачи государственного экзамена

Итак, мы узнали, как разными способами можно решать логические задачи. Оказывается таких приемов несколько, они разнообразны и каждый из них имеет свою область применения.

В результате проведенной работы мы выяснили, что все логические задачи делятся на определенные группы:

  • Истинноностные задачи
  • Задачи, решаемые с конца
  • Задачи на переливание
  • Задачи на взвешивание
  • Задачи типа «Кто есть кто?»
  • Задачи на пересечение и объединение множеств
  • Математические ребусы

При решении задач этих групп на уроках математики в СОШ № 20 с учащимися 5-9 классов нами было выявлено, что каждая группа задач имеет свой оптимальный метод решения:

Истинноностные задачи

При решении задач данного типа лучше всего использовать метод рассуждений. Он позволяет проводить рассуждения, используя последовательно все условия задачи, и приходить к выводу, который и будет являться ответом задачи.
Задачи на пересечение и объединение множеств

Это тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.
Метод Эйлера является незаменимым при решении задач этого типа, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие.

Задачи на переливание

При решении текстовых логических задач на переливание применяется метод построения таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи
Задачи на взвешивание

В таких задачах от решающего требуется локализовать отличающийся от остальных предмет по весу за ограниченное число взвешиваний. Поиск решения в этом случае осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой. Задачи данного типа чаще всего решаются методом рассуждений.
Математические ребусы

Записи восстанавливаются на основании логических рассуждений. При этом нельзя ограничиваться отысканием только одного решения. Испытание нужно доводить до конца, чтобы убедиться, что нет других решений, или найти все решения.
Задачи, решаемые с конца

Такие задачи очень часто ребята задают друг другу в виде головоломок на задуманное число. Задачи решаются методом математических вычислений, основанных на конечном результате в условии .
Задачи типа «Кто есть кто?» Смысл задач под кодовым названием «Кто есть кто?» довольно прост. Нам даются отношения между предметами и следуя по цепочке этих отношений, мы приходим к правильному результату. Задачи данного типа чаще всего решаются методом графов.

После такого глубокого изучения нашей проблемы мы решили создать пособие для обучения методам решения данных задач для учащихся и учителей. В нашем пособии содержатся все типы логических задач, представлены методы их решения, набор задач для самостоятельного решения. Данная методичка была распространена среди учащихся СОШ № 20 и учителей математики СОШ № 39, ООШ № 54.

Кроме этого, инициативная группа учащихся с удовольствием делилась своими знаниями с одноклассниками и помогала им в решении разных типов логических задач.

Каталог:wp-content -> uploads -> 2012
2012 -> Система социальной помощи семье, воспитывающей ребенка с ограниченными возможностями здоровья, в учреждениях социального обслуживания семьи и детей
2012 -> Коалиция организаций ветеранов боевых действий Дальневосточного Федерального округа «Боевое братство дв»
2012 -> Стерлитамакский филиал
2012 -> Питання про виникнення людини хвилює людство здавна. У XIX ст
2012 -> Методические рекомендации по проведению занятий с применением интерактивных форм обучения
2012 -> Тема опыта
2012 -> Вопросы к экзамену Планирование и организация работы кадровой службы Современные концепции управления персоналом
2012 -> Танцевально двигательная
2012 -> Современной

Поделитесь с Вашими друзьями:

Сайт про загадки

Основные виды логических задач и способы их решения.

Логические задачи – это неотъемлемая часть сегодняшнего дня. Они не покидают ученика в течение всего обучения в школе и прощаются с ним при сдаче Единого Государственного экзамена.

Есть люди, для которых решение логической задачи — увлекательная, но несложная задача. Их мозг как луч прожектора сразу освещает все хитроумные построения, и к правильному ответу он приходит необычайно быстро. Замечательно, что при этом он и не могут объяснить, как они пришли к решению. "Ну это же очевидно, ясно", — говорят они. "Ведь если … " — и они начинают легко распутывать клубок противоречивых высказываний. "Действительно, все ясно", — говорит слушатель, огорченный тем, что он сам не увидел очевидного рассуждения. Согласитесь, что такое же ощущение часто возникает при чтении детективов.

В своей педагогической практике я не раз сталкивалась с тем, что эти задачи вызывают массу трудностей у школьников. Чтобы помочь справиться с этими задачами, мною была организованна инициативная группа учащихся по изучению типов логических задач и способов их решения. Целью работы нашей является изучение видов логических задач и методов их решения .

Для достижения цели нам необходимо решить следующие задачи:

  1. Познакомиться с основными видами логических задач;
  2. Изучить методы решения логических задач
  3. Подготовить подборку наиболее интересных задач для успешной сдачи государственного экзамена

Итак, мы узнали, как разными способами можно решать логические задачи. Оказывается таких приемов несколько, они разнообразны и каждый из них имеет свою область применения.

В результате проведенной работы мы выяснили, что все логические задачи делятся на определенные группы:

  • Истинноностные задачи
  • Задачи, решаемые с конца
  • Задачи на переливание
  • Задачи на взвешивание
  • Задачи типа «Кто есть кто?»
  • Задачи на пересечение и объединение множеств
  • Математические ребусы

При решении задач этих групп на уроках математики в СОШ № 20 с учащимися 5-9 классов нами было выявлено, что каждая группа задач имеет свой оптимальный метод решения:

Истинноностные задачи

При решении задач данного типа лучше всего использовать метод рассуждений. Он позволяет проводить рассуждения, используя последовательно все условия задачи, и приходить к выводу, который и будет являться ответом задачи.
Задачи на пересечение и объединение множеств

Это тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.
Метод Эйлера является незаменимым при решении задач этого типа, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие.

Задачи на переливание

При решении текстовых логических задач на переливание применяется метод построения таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи
Задачи на взвешивание

В таких задачах от решающего требуется локализовать отличающийся от остальных предмет по весу за ограниченное число взвешиваний. Поиск решения в этом случае осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой. Задачи данного типа чаще всего решаются методом рассуждений.
Математические ребусы

Записи восстанавливаются на основании логических рассуждений. При этом нельзя ограничиваться отысканием только одного решения. Испытание нужно доводить до конца, чтобы убедиться, что нет других решений, или найти все решения.
Задачи, решаемые с конца

Такие задачи очень часто ребята задают друг другу в виде головоломок на задуманное число. Задачи решаются методом математических вычислений, основанных на конечном результате в условии .
Задачи типа «Кто есть кто?» Смысл задач под кодовым названием «Кто есть кто?» довольно прост. Нам даются отношения между предметами и следуя по цепочке этих отношений, мы приходим к правильному результату. Задачи данного типа чаще всего решаются методом графов.

После такого глубокого изучения нашей проблемы мы решили создать пособие для обучения методам решения данных задач для учащихся и учителей. В нашем пособии содержатся все типы логических задач, представлены методы их решения, набор задач для самостоятельного решения. Данная методичка была распространена среди учащихся СОШ № 20 и учителей математики СОШ № 39, ООШ № 54.

Кроме этого, инициативная группа учащихся с удовольствием делилась своими знаниями с одноклассниками и помогала им в решении разных типов логических задач.

Каталог:wp-content -> uploads -> 2012
2012 -> Система социальной помощи семье, воспитывающей ребенка с ограниченными возможностями здоровья, в учреждениях социального обслуживания семьи и детей
2012 -> Коалиция организаций ветеранов боевых действий Дальневосточного Федерального округа «Боевое братство дв»
2012 -> Стерлитамакский филиал
2012 -> Питання про виникнення людини хвилює людство здавна. У XIX ст
2012 -> Методические рекомендации по проведению занятий с применением интерактивных форм обучения
2012 -> Тема опыта
2012 -> Вопросы к экзамену Планирование и организация работы кадровой службы Современные концепции управления персоналом
2012 -> Танцевально двигательная
2012 -> Современной

Поделитесь с Вашими друзьями:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *