Совместимость системы линейных уравнений

Содержание

Системы линейных уравнений

Назначение сервиса. Онлайн-калькулятор предназначен для исследования системы линейных уравнений. Обычно в условии задачи требуется найти общее и частное решение системы. При исследовании систем линейных уравнений решаются следующие задачи:

  1. является ли система совместной;
  2. если система совместна, то определенна или неопределенна (критерий совместности системы определяется по теореме);
  3. если система определенна, то как найти ее единственное решение (используются метод Крамера, метод обратной матрицы или метод Жордана-Гаусса);
  4. если система неопределенна, то как описать множество ее решений.

Классификация систем линейных уравнений

Произвольная система линейных уравнений имеет вид:
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2
……………………………………………
am1x1 + am2x2 + … + amnxn = bm

  1. Системы линейных неоднородных уравнений (количество переменных равно количеству уравнений, = ).
  2. Произвольные системы линейных неоднородных уравнений ( > или < ).
  3. Системы линейных однородных уравнений.

Определение. Решением системы называется всякая совокупность чисел c1,c2,…,cn, подстановка которых в систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.

Определение. Две системы называются эквивалентными, если решение первой является решением второй и наоборот.

Определение. Система, имеющая хотя бы одно решение, называется совместной. Система, не имеющая ни одного решения, называется несовместной.

Определение. Система, имеющая единственное решение, называется определенной, а имеющая более одного решения – неопределенной.

Алгоритм решения систем линейных уравнений

  1. Находим ранги основной и расширенной матриц. Если они не равны, то по теореме Кронекера-Капелли система несовместна и на этом исследование заканчивается.
  2. Пусть = . Выделяем базисный минор. При этом все неизвестные системы линейных уравнений подразделяются на два класса. Неизвестные, коэффициенты при которых вошли в базисный минор, называют зависимыми, а неизвестные, коэффициенты при которых не попали в базисный минор – свободными. Заметим, что выбор зависимых и свободных неизвестных не всегда однозначен.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из уравнений с неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Полученная система решается одним из способов: метод Крамера, метод обратной матрицы или метод Жордана-Гаусса.

    § 3. Системы линейных уравнений

    Находятся соотношения, выражающие зависимые переменные через свободные.

Инструкция. Для получения онлайн решения необходимо выбрать Результат исследования сохраняется в формате Word и Excel (см. пример решения).

Высшая математика » Системы линейных алгебраических уравнений » Теорема Кронекера-Капелли. Исследование СЛАУ на совместность. » Первая часть.

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи". В частности, нужны такие понятия, как матрица системы и расширенная матрица системы, поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют – то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Решение

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left( \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left( \begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы". Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований".

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг – это наивысший порядок миноров матрицы, среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ – это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков":

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21.

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

$$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы.

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может – ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме. Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left( \begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-3\cdot I\\ III+4\cdot I \end{array} \rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ III-2\cdot II \end{array}\rightarrow\\ &\rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к трапециевидной форме. На главной дагонали полученной матрицы $\left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right)$ расположены три ненулевых элемента: -1, 3 и -7. Вывод: ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к трапециевидной форме: $\left( \begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество – это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса. Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор – это дело вкуса.

Ответ: Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4. \end{aligned} \right.$ на совместность.

Решение

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований. Расширенная матрица системы: $\widetilde{A}=\left( \begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

Расширенная матрица системы приведена к ступенчатой форме. Если матрица приведена к ступенчатой форме, то ранг её равен количеству ненулевых строк. Следовательно, $\rang A=3$. Матрица $A$ (до черты) приведена к трапециевидной форме и ранг её равен 2, $\rang A=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ: система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Решение

Расширенная матрица системы имеет вид: $\widetilde{A}=\left( \begin{array} {ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$. Поменяем местами первую и вторую строки данной матрицы, чтобы первым элементом первой строки стала единица: $\left( \begin{array} {ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$.

Мы привели расширенную матрицу системы и саму матрицу системы к трапециевидной форме. Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang A < n$, то согласно пункту №2 следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ: система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Онлайн-занятия по высшей математике

Системы линейных уравнений

Назначение сервиса. Онлайн-калькулятор предназначен для исследования системы линейных уравнений. Обычно в условии задачи требуется найти общее и частное решение системы. При исследовании систем линейных уравнений решаются следующие задачи:

  1. является ли система совместной;
  2. если система совместна, то определенна или неопределенна (критерий совместности системы определяется по теореме);
  3. если система определенна, то как найти ее единственное решение (используются метод Крамера, метод обратной матрицы или метод Жордана-Гаусса);
  4. если система неопределенна, то как описать множество ее решений.

Классификация систем линейных уравнений

Произвольная система линейных уравнений имеет вид:
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2
……………………………………………
am1x1 + am2x2 + … + amnxn = bm

  1. Системы линейных неоднородных уравнений (количество переменных равно количеству уравнений, = ).
  2. Произвольные системы линейных неоднородных уравнений ( > или < ).
  3. Системы линейных однородных уравнений.

Определение. Решением системы называется всякая совокупность чисел c1,c2,…,cn, подстановка которых в систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.

Определение. Две системы называются эквивалентными, если решение первой является решением второй и наоборот.

Определение. Система, имеющая хотя бы одно решение, называется совместной. Система, не имеющая ни одного решения, называется несовместной.

Определение. Система, имеющая единственное решение, называется определенной, а имеющая более одного решения – неопределенной.

Системы линейных уравнений

Алгоритм решения систем линейных уравнений

  1. Находим ранги основной и расширенной матриц. Если они не равны, то по теореме Кронекера-Капелли система несовместна и на этом исследование заканчивается.
  2. Пусть = . Выделяем базисный минор. При этом все неизвестные системы линейных уравнений подразделяются на два класса. Неизвестные, коэффициенты при которых вошли в базисный минор, называют зависимыми, а неизвестные, коэффициенты при которых не попали в базисный минор – свободными. Заметим, что выбор зависимых и свободных неизвестных не всегда однозначен.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из уравнений с неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Полученная система решается одним из способов: метод Крамера, метод обратной матрицы или метод Жордана-Гаусса. Находятся соотношения, выражающие зависимые переменные через свободные.

Инструкция. Для получения онлайн решения необходимо выбрать Результат исследования сохраняется в формате Word и Excel (см. пример решения).

Высшая математика » Системы линейных алгебраических уравнений » Теорема Кронекера-Капелли. Исследование СЛАУ на совместность. » Первая часть.

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи". В частности, нужны такие понятия, как матрица системы и расширенная матрица системы, поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют – то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Решение

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left( \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left( \begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы". Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований".

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг – это наивысший порядок миноров матрицы, среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ – это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков":

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система является определённой, т.е.

Пример 1. Исследовать совместность системы уравнений

имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы.

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может – ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме. Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left( \begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-3\cdot I\\ III+4\cdot I \end{array} \rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ III-2\cdot II \end{array}\rightarrow\\ &\rightarrow \left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к трапециевидной форме. На главной дагонали полученной матрицы $\left( \begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right)$ расположены три ненулевых элемента: -1, 3 и -7. Вывод: ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к трапециевидной форме: $\left( \begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество – это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса. Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор – это дело вкуса.

Ответ: Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4.

\end{aligned} \right.$ на совместность.

Решение

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований. Расширенная матрица системы: $\widetilde{A}=\left( \begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

Расширенная матрица системы приведена к ступенчатой форме. Если матрица приведена к ступенчатой форме, то ранг её равен количеству ненулевых строк. Следовательно, $\rang A=3$. Матрица $A$ (до черты) приведена к трапециевидной форме и ранг её равен 2, $\rang A=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ: система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Решение

Расширенная матрица системы имеет вид: $\widetilde{A}=\left( \begin{array} {ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$. Поменяем местами первую и вторую строки данной матрицы, чтобы первым элементом первой строки стала единица: $\left( \begin{array} {ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$.

Мы привели расширенную матрицу системы и саму матрицу системы к трапециевидной форме. Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang A < n$, то согласно пункту №2 следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ: система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Онлайн-занятия по высшей математике

Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р.

Пусть А = (26) матрица этой системы и А1 = (27) расширенная матрица. Если система (25) имеет хотя бы одно решение, то её называют Совместной, в противном случае система Несовместная. Если все слагаемые, содержащие неизвестные, стоят в левых частях уравнений, а свободные члены – в правых частях, то система называется Приведённой. Если в системе (25) хотя бы один свободный член отличен от нуля, то эта система называется Неоднородной. Если же все свободные члены равны нулю, то имеем систему Линейных однородных уравнений.

Теорема 26 (теорема Кронекера – Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг её матрицы равен рангу расширенной матрицы.

Доказательство. Þ Пусть система (25) совместна. Следовательно, существуют такие элементы A1, A2, … , AN , что

Записав эти равенства в векторной форме, получим, что В = A1×А1 + A2×А2 + … + AN×АN , где А1, а2, … , АN –векторы-столбцы матрицы А, В – вектор-столбец свободных членов. Из последнего равенства следует, что системы векторов А1, а2, … , АN и А1, а2, … , АN , В эквивалентны, поэтому их ранги равны. Итак, rang A = rang A1.

Ü Пусть rang A = rang A1 = К. Не нарушая общности, можно считать, что отличный от нуля минор К-го порядка в матрице А Стоит в левом верхнем углу. Векторы-столбцы обозначим А1, а2, … , Ак, ак+1, … , АN, В (*). Система А1, а2, … , Ак Будет максимальной линейно независимой подсистемой в системе (*), следовательно, найдутся такие коэффициенты Х10, х20, … , хк0, Что В = Х10 А1 + Х20 А2 + … + Хк0 Ак. Это равенство равносильно равенству В = Х10 А1 + Х20 А2 + … + Хк0 Ак + … + 0×Ак+1 + … + 0×АN. Перейдя к координатам, получим:

(28)

Отсюда следует, что (Х10, х20, … , хк0, 0,… ,0) – решение системы (25), т. е. эта система совместна.

Из теоремы Кронекера – Капелли следуют правила решения системы линейных уравнений.

Для решения системы линейных уравнений достаточно

1. Найти ранги основной и расширенной матриц ( А и А1 ). Если rang A ¹ rang A1, То система не имеет решения.

2. Если rang A = rang A1 = К, то для решения достаточно оставить К Уравнений, коэффициенты которых стоят на тех строчках матрицы А, На которых стоит базисный минор, и в этих уравнениях оставить в их левых частях те неизвестные, коэффициенты которых входят в базисный минор. Остальные неизвестные нужно перенести в правые части уравнений. Они могут принимать все возможные значения из поля Р. Эти неизвестные называются Свободными. (Не нарушая общности, можно считать, что оставлены первые К уравнений и первые К неизвестных, система (29)).

(29)

Определитель левой части системы (29) отличен от нуля, число уравнений равно числу неизвестных, поэтому (по теореме Крамера) эта система при всевозможных Хк+1, … , хN имеет единственное решение.

Следовательно, неизвестные Х1, х2, … , хк можно выразить через Хк+1, … , хN. Формулы, с помощью которых Х1, х2, … , хк выражаются через Хк+1, … , хN задают так называемое Общее решение Данной системы уравнений. При каждом конкретном наборе переменных Хк+1, … , хN мы получим единственный набор Х1, х2, … , хк. Это Частное решение Системы уравнений. Число свободных неизвестных равно NК. Поэтому если К = N, то свободных неизвестных нет, система (29), а поэтому и система (25), имеет единственное решение. Если же К < N, То система имеет бесконечно много решений.

Пример. Исследовать систему уравнений и решить её, если она совместна в поле R.

Решение. Составим матрицу и расширенную матрицу.

А1 =

Так как первый и второй столбцы пропорциональны, то для нахождения ранга матрицы один из них можно удалить. Будем считать, что удалён второй столбец. Минор М = ¹ 0.

Окаймим этот минор первым столбцом и третьей строкой, получим

D = = 56 ¹ 0.

Следовательно, rang A = 3. Но rang A1 Не может быть больше 3. Итак, rang A = rang A1 = 3. Для решения остаются три уравнения, т. е. все уравнения. Оставим в левых частях первое, третье и четвёртое неизвестные, второе неизвестное перенесём в правые части,

Получим

Для этой системы D = 56, = 84Х2 ,

= 20, = 24. По формулам Крамера получаем Х1 = , Х3 = , х4 = . Общее решение данной системы (), Х2 – любое действительное число.

Системы линейных уравнений

Назначение сервиса. Онлайн-калькулятор предназначен для исследования системы линейных уравнений.

Обычно в условии задачи требуется найти общее и частное решение системы. При исследовании систем линейных уравнений решаются следующие задачи:

  1. является ли система совместной;
  2. если система совместна, то определенна или неопределенна (критерий совместности системы определяется по теореме);
  3. если система определенна, то как найти ее единственное решение (используются метод Крамера, метод обратной матрицы или метод Жордана-Гаусса);
  4. если система неопределенна, то как описать множество ее решений.

Классификация систем линейных уравнений

Произвольная система линейных уравнений имеет вид:
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2
……………………………………………
am1x1 + am2x2 + … + amnxn = bm

  1. Системы линейных неоднородных уравнений (количество переменных равно количеству уравнений, = ).
  2. Произвольные системы линейных неоднородных уравнений ( > или < ).
  3. Системы линейных однородных уравнений.

Определение. Решением системы называется всякая совокупность чисел c1,c2,…,cn, подстановка которых в систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.

Определение. Две системы называются эквивалентными, если решение первой является решением второй и наоборот.

Определение. Система, имеющая хотя бы одно решение, называется совместной. Система, не имеющая ни одного решения, называется несовместной.

Определение. Система, имеющая единственное решение, называется определенной, а имеющая более одного решения – неопределенной.

Алгоритм решения систем линейных уравнений

  1. Находим ранги основной и расширенной матриц. Если они не равны, то по теореме Кронекера-Капелли система несовместна и на этом исследование заканчивается.
  2. Пусть = . Выделяем базисный минор. При этом все неизвестные системы линейных уравнений подразделяются на два класса. Неизвестные, коэффициенты при которых вошли в базисный минор, называют зависимыми, а неизвестные, коэффициенты при которых не попали в базисный минор – свободными. Заметим, что выбор зависимых и свободных неизвестных не всегда однозначен.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из уравнений с неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Полученная система решается одним из способов: метод Крамера, метод обратной матрицы или метод Жордана-Гаусса. Находятся соотношения, выражающие зависимые переменные через свободные.

Инструкция. Для получения онлайн решения необходимо выбрать Результат исследования сохраняется в формате Word и Excel (см. пример решения).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *