Преобразование в многочлен онлайн

Упрощение выражений

Упрощение выражений

Шаг 1. Введите выражение для упрощения

Сервис (своего рода программа для классов 5 и 7, 8, 9, 10, 11) позволяет упрощать математические выражения: алгебра (алгебраические выражения), тригонометрических выражений, выражения с корнями и другими степенями, сокращение дробей, также упрощает сложные буквенные выражения,
для упрощение комплексных выражений вам сюда(!)

Важно В выражения переменные обозначаются ОДНОЙ буквой! Например, a, b, …, z/

Примеры упрощаемых выражений

  • 2*a -7*a
  • exp(-7*a)/exp(2*a)
  • 1/x + 1/y
  • sin(x)^2 + cos(x)^2

Правила ввода функций

В функции f можно делать следующие операции:Действительные числа вводить в виде 7.5, не 7,52*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Функция f может состоять из функций (обозначения даны в алфавитном порядке):absolute(x) Функция — абсолютное значение x (модуль x или |x|) arccos(x) Функция — арккосинус от xarccosh(x) Функция — арккосинус гиперболический от xarcsin(x) Функция — арксинус от xarcsinh(x) Функция — арксинус гиперболический от xarctan(x) Функция — арктангенс от xarctanh(x) Функция — арктангенс гиперболический от xe Функция — e это то, которое примерно равно 2.7 exp(x) Функция — экспонента от x (тоже самое, что и e^x) floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) log(x) or ln(x) Функция — Натуральный логарифм от x (Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) pi Число — "Пи", которое примерно равно 3.14 sign(x) Функция — Знак xsin(x) Функция — Синус от xcos(x) Функция — Косинус от xsinh(x) Функция — Синус гиперболический от xcosh(x) Функция — Косинус гиперболический от xsqrt(x) Функция — Корень из от xx^2 Функция — Квадрат xtan(x) Функция — Тангенс от xtanh(x) Функция — Тангенс гиперболический от x

Решение уравнений многочлена

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Многочлен представляет собой алгебраическую сумму произведений чисел, переменных и их степеней. Преобразование многочленов обычно включает два вида задач. Выражение требуется либо упростить, либо разложить на множители, т.е. представить его в виде произведения двух или нескольких многочленов или одночлена и многочлена.

Так же читайте нашу статью "Решить квадратичное уравнение онлайн"

Чтобы упростить многочлен, приведите подобные слагаемые. Пример. Упростите выражение \ Найдите одночлены с одинаковой буквенной частью. Сложите их. Запишите полученное выражение: \ Вы упростили многочлен.

В задачах, которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в состав всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример.

Решение задач по математике онлайн

Разложите на множители многочлен \ Вынесите за скобки \ т.к. переменная m входит в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен \ Отсюда: \

Где можно решить уравнение многочлена онлайн?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Преобразование выражений. Коротко о главном.

Упрощение выражений

Шаг 1. Введите выражение для упрощения

Сервис (своего рода программа для классов 5 и 7, 8, 9, 10, 11) позволяет упрощать математические выражения: алгебра (алгебраические выражения), тригонометрических выражений, выражения с корнями и другими степенями, сокращение дробей, также упрощает сложные буквенные выражения,
для упрощение комплексных выражений вам сюда(!)

Важно В выражения переменные обозначаются ОДНОЙ буквой! Например, a, b, …, z/

Примеры упрощаемых выражений

  • 2*a -7*a
  • exp(-7*a)/exp(2*a)
  • 1/x + 1/y
  • sin(x)^2 + cos(x)^2

Правила ввода функций

В функции f можно делать следующие операции:Действительные числа вводить в виде 7.5, не 7,52*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Функция f может состоять из функций (обозначения даны в алфавитном порядке):absolute(x) Функция — абсолютное значение x (модуль x или |x|) arccos(x) Функция — арккосинус от xarccosh(x) Функция — арккосинус гиперболический от xarcsin(x) Функция — арксинус от xarcsinh(x) Функция — арксинус гиперболический от xarctan(x) Функция — арктангенс от xarctanh(x) Функция — арктангенс гиперболический от xe Функция — e это то, которое примерно равно 2.7 exp(x) Функция — экспонента от x (тоже самое, что и e^x) floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) log(x) or ln(x) Функция — Натуральный логарифм от x (Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) pi Число — "Пи", которое примерно равно 3.14 sign(x) Функция — Знак xsin(x) Функция — Синус от xcos(x) Функция — Косинус от xsinh(x) Функция — Синус гиперболический от xcosh(x) Функция — Косинус гиперболический от xsqrt(x) Функция — Корень из от xx^2 Функция — Квадрат xtan(x) Функция — Тангенс от xtanh(x) Функция — Тангенс гиперболический от x

На главную

Школьная алгебра

Многочлены

Понятие многочлена

Определение многочлена: многочлен — это сумма одночленов. Пример многочлена:

2a + 5b

здесь мы видим сумму двух одночленов, а это и есть многочлен, т.е. сумма одночленов.

Слагаемые, из которых состоит многочлен, называются членами многочлена.

Является ли разность одночленов многочленом? Да, является, ведь разность легко приводится к сумме, пример: 5a – 2b = 5a + (-2b).

Одночлены тоже считают многочленами. Но в одночлене нет суммы, тогда почему его считают многочленом? А к нему можно прибавить ноль и получить его сумму с нулевым одночленом. Итак, одночлен — это частный случай многочлена, он состоит из одного члена.

Число ноль — это нулевой многочлен.

Стандартный вид многочлена

Что такое многочлен стандартного вида? Многочлен есть сумма одночленов и если все эти одночлены, составляющие многочлен, записаны в стандартном виде, кроме того среди них не должно быть подобных, тогда многочлен записан в стандартном виде.

Пример многочлена в стандартном виде:

2a + 5b

здесь многочлен состоит из 2-х одночленов, каждый из которых имеет стандартный вид, среди одночленов нет подобных.

Теперь пример многочлена, который не имеет стандартный вид:

2a + 4a + 5b

здесь два одночлена: 2a и 4a являются подобными. Надо их сложить, тогда многочлен получит стандартный вид:

6a + 5b

Ещё пример:

2a + bca10

Этот многочлен приведен к стандартному виду? Нет, у него второй член не записан в стандартом виде. Записав его в стандартном виде, получаем многочлен стандартного вида:

2a + 10abc

Степень многочлена

Что такое степень многочлена?

Степень многочлена определение:

Степень многочлена – наибольшая степень, которую имеют одночлены, составляющие данный многочлен стандартного вида.

Пример. Какова степень многочлена 5h? Степень многочлена 5h равна одному, ведь в этот многочлен входит всего один одночлен и степень его равна одному.

Другой пример. Какова степень многочлена 5a2h3s4 +1? Степень многочлена 5a2h3s4 + 1 равна девяти, ведь в этот многочлен входят два одночлена, наибольшую степень имеет первый одночлен 5a2h3s4, а его степень равна 9-ти.

Решение уравнений многочлена

Ещё пример. Какова степень многочлена 5? Степень многочлена 5 равна нулю. Итак, степень многочлена, состоящего только из числа, т.е. без букв, равна нулю.

Последний пример. Какова степень нулевого многочлена, т.е. нуля? Степень нулевого многочлена не определена.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *