Обратная матрица

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице , если А*А-1 = , где — единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу.

Онлайн калькулятор. Обратная матрицы.

Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица .

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 • (-1 • 4-(-2 • 5))-2 • (2 • 4-(-2 • (-2)))+3 • (2 • 5-(-1 • (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 • 4-5 • (-2)) = 6

1,2 = -(2 • 4-(-2 • (-2))) = -4

1,3 = (2 • 5-(-2 • (-1))) = 8

2,1 = -(2 • 4-5 • 3) = 7

2,2 = (-1 • 4-(-2 • 3)) = 2

2,3 = -(-1 • 5-(-2 • 2)) = 1

3,1 = (2 • (-2)-(-1 • 3)) = -1

3,2 = -(-1 • (-2)-2 • 3) = 4

3,3 = (-1 • (-1)-2 • 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы .
  2. Находим алгебраические дополнения ко всем элементам матрицы .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы .

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай: Обратной, по отношению к единичной матрице , является единичная матрица .

Пример №2. Найти матрицу, обратную матрице .
Решение.
1. Найдем .
2. Ищем алгебраические дополнения каждого элемента матрицы A:
; ; .
Получили алгебраические дополнения элементов первой строки. Аналогично для элементов второй и третьей строк получаем:
; ; .
; ; .
Объединяя 3 и 4 пункты, получаем обратную матрицу
.
Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу .

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице , если А*А-1 = , где — единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица .

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 • (-1 • 4-(-2 • 5))-2 • (2 • 4-(-2 • (-2)))+3 • (2 • 5-(-1 • (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 • 4-5 • (-2)) = 6

1,2 = -(2 • 4-(-2 • (-2))) = -4

1,3 = (2 • 5-(-2 • (-1))) = 8

2,1 = -(2 • 4-5 • 3) = 7

2,2 = (-1 • 4-(-2 • 3)) = 2

2,3 = -(-1 • 5-(-2 • 2)) = 1

3,1 = (2 • (-2)-(-1 • 3)) = -1

3,2 = -(-1 • (-2)-2 • 3) = 4

3,3 = (-1 • (-1)-2 • 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы .
  2. Находим алгебраические дополнения ко всем элементам матрицы .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы .

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай: Обратной, по отношению к единичной матрице , является единичная матрица .

Пример №2. Найти матрицу, обратную матрице .
Решение.
1. Найдем .
2. Ищем алгебраические дополнения каждого элемента матрицы A:
; ; .
Получили алгебраические дополнения элементов первой строки.

Найти обратную матрицу онлайн

Аналогично для элементов второй и третьей строк получаем:
; ; .
; ; .
Объединяя 3 и 4 пункты, получаем обратную матрицу
.
Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу .

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице , если А*А-1 = , где — единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

Нахождение обратной матрицы онлайн

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица .

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 • (-1 • 4-(-2 • 5))-2 • (2 • 4-(-2 • (-2)))+3 • (2 • 5-(-1 • (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 • 4-5 • (-2)) = 6

1,2 = -(2 • 4-(-2 • (-2))) = -4

1,3 = (2 • 5-(-2 • (-1))) = 8

2,1 = -(2 • 4-5 • 3) = 7

2,2 = (-1 • 4-(-2 • 3)) = 2

2,3 = -(-1 • 5-(-2 • 2)) = 1

3,1 = (2 • (-2)-(-1 • 3)) = -1

3,2 = -(-1 • (-2)-2 • 3) = 4

3,3 = (-1 • (-1)-2 • 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы .
  2. Находим алгебраические дополнения ко всем элементам матрицы .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы .

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай: Обратной, по отношению к единичной матрице , является единичная матрица .

Пример №2. Найти матрицу, обратную матрице .
Решение.
1. Найдем .
2. Ищем алгебраические дополнения каждого элемента матрицы A:
; ; .
Получили алгебраические дополнения элементов первой строки. Аналогично для элементов второй и третьей строк получаем:
; ; .
; ; .
Объединяя 3 и 4 пункты, получаем обратную матрицу
.
Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу .

Нахождение обратной матрицы является важной составляющей в разделе линейной алгебры. С помощью таких матриц, если они существуют, можно быстро найти решение системы линейных уравнений.

Матрицаназывается обратной к матрице,если выполняются следующие равенства.

.

Если определитель матрицыотличен от нуля, то матрицу называют не особо или невырожденной.

Для того, чтобы матрица имела обратную необходимо и достаточно, чтобы она была невырожденной

Алгоритм нахождения обратной матрицы

Пусть имеем квадратную матрицу

и нужно найти обратную к ней. Для этого нужно выполнить следующие действия:

1. Найти определитель матрицы. Если он не равен нулю то выполняем следующие действия. В противном случае данная матрица вырождена и для нее не существует обратной

2. Найти алгебраические дополнения элементов матрицы . Они равны минорам, умноженным на в степени суммы строки и столбца, для которого ищем.

3. Составить матрицу из алгебраических дополнений элементов матрицы матрицы и протранспонировать ее. Эта матрица называется присоединенной или союзной и обозначается .

4. Разделить присоединенную матрицу на детерминант . Полученная матрица будет обратной и иметь свойства, которые изложены в начале статьи.

Пример 1.

Найти матрицу, обратную к матрице (Дубовик В.П., Юрик И.И.

Нахождение обратной матрицы

"Высшая математика. Сборник задач")

1) (1.127)

2) (1.130)

3) (1.133)

Решение.

1)Находим определитель матрицы

Так как детерминант не равен нулю (), то обратная матрица существует. Находим матрицу, составленную из алгебраических дополнений

Матрица дополнений примет вид

Транспонируем ее и получаем присоединенную

Разделим ее на определитель и получим обратную

Видим, что в случае, когда определитель равен единице присоединена и обратная матрицы совпадают.

2) Вычисляем определитель матрицы

Находим матрицу алгебраических дополнений

Конечный вид матрицы дополнений

Транспонируем ее и находим союзную матрицу

Находим обратную матрицу

3) Вычислим детерминант матрицы. Для этого разложим его на первую строчку. В результате получим два отличны от нуля слагаемые

Находим матрицу алгебраических дополнений. Расписание определителя проводим по строкам и столбцам, в которых больше нулевых элементов (обозначены черным цветом).

Конечный вид матрицы дополнений следующий

Транспонируем ее и находим присоединенную матрицу

Поскольку определитель матрицы равен единице то обратная матрица совпадает с присоединенной. Данный пример назад.

При вычислениях обратной матрицы типичными являются ошибки связанные с неправильными знаками при вычислении определителя и матрицы дополнений.

Высшая математика » Матрицы и определители » Обратная матрица » Вычисление обратной матрицы с помощью алгебраических дополнений.

Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы.

Матрица $A^{-1}$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^{-1}\cdot A=A\cdot A^{-1}=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Обратная матрица $A^{-1}$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^{-1}$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части.

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_{n\times n}$. Для того, чтобы найти обратную матрицу $A^{-1}$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $\Delta A\neq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_{ij}$ каждого элемента матрицы $A$ и записать матрицу $A_{n\times n}^{*}=\left(A_{ij} \right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$.

Матрицу ${A^{*}}^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (пример №2), третьего (пример №3), четвертого (пример №4). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части.

Пример №1

Найти матрицу, обратную к матрице $A=\left( \begin{array} {cccc} 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & -1 & -9 & 0 \end{array} \right)$.

Обратная матрица

Решение

Так как все элементы четвёртого столбца равны нулю, то $\Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $\Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Пример №2

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right)$.

Решение

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$ \Delta A=\left| \begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right|=-5\cdot 8-7\cdot 9=-103. $$

Так как $\Delta A \neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

\begin{aligned} & A_{11}=(-1)^2\cdot 8=8; \; A_{12}=(-1)^3\cdot 9=-9;\\ & A_{21}=(-1)^3\cdot 7=-7; \; A_{22}=(-1)^4\cdot (-5)=-5.\\ \end{aligned}

Составляем матрицу из алгебраических дополнений: $A^{*}=\left( \begin{array} {cc} 8 & -9\\ -7 & -5 \end{array}\right)$.

Транспонируем полученную матрицу: ${A^{*}}^T=\left( \begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$). Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, имеем:

$$ A^{-1}=\frac{1}{-103}\cdot \left( \begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)=\left( \begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right) $$

Итак, обратная матрица найдена: $A^{-1}=\left( \begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A^{-1}\cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left( \begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$, а в виде $-\frac{1}{103}\cdot \left( \begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$:

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ: $A^{-1}=\left( \begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$.

Пример №3

Найти обратную матрицу для матрицы $A=\left( \begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right)$.

Решение

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$ \Delta A=\left| \begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right| = 18-36+56-12=26. $$

Так как $\Delta A\neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

Составляем матрицу из алгебраических дополнений и транспонируем её:

$$ A^*=\left( \begin{array} {ccc} 6 & 8 & -12 \\ -5 & 2 & -3 \\ 1 & -16 & 37\end{array} \right); \; {A^*}^T=\left( \begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right) $$

Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, получим:

$$ A^{-1}=\frac{1}{26}\cdot \left( \begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)= \left( \begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right) $$

Итак, $A^{-1}=\left( \begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A\cdot A^{-1}=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left( \begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$, а в виде $\frac{1}{26}\cdot \left( \begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)$:

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ: $A^{-1}=\left( \begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$.

Пример №4

Найти матрицу, обратную матрице $A=\left( \begin{array} {cccc} 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end{array} \right)$.

Решение

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу). Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

Определитель матрицы $A$ вычислим по следующей формуле:

$$ \Delta A=a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}+a_{14}\cdot A_{14}=6\cdot 556+(-5)\cdot(-300)+8\cdot(-536)+4\cdot(-112)=100. $$

А далее продолжаем находить алгебраические дополнения:

Матрица из алгебраических дополнений: $A^*=\left(\begin{array}{cccc} 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end{array}\right)$.

Присоединённая матрица: ${A^*}^T=\left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end{array}\right)$

Обратная матрица:

$$ A^{-1}=\frac{1}{100}\cdot \left( \begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end{array} \right)= \left( \begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right) $$

Проверка:

Следовательно, обратная матрица найдена верно.

Ответ: $A^{-1}=\left( \begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.

Онлайн-занятия по высшей математике

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице , если А*А-1 = , где — единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица .

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.

  4. Заполнение союзной (взаимной, присоединённой) матрицы .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 • (-1 • 4-(-2 • 5))-2 • (2 • 4-(-2 • (-2)))+3 • (2 • 5-(-1 • (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 • 4-5 • (-2)) = 6

1,2 = -(2 • 4-(-2 • (-2))) = -4

1,3 = (2 • 5-(-2 • (-1))) = 8

2,1 = -(2 • 4-5 • 3) = 7

2,2 = (-1 • 4-(-2 • 3)) = 2

2,3 = -(-1 • 5-(-2 • 2)) = 1

3,1 = (2 • (-2)-(-1 • 3)) = -1

3,2 = -(-1 • (-2)-2 • 3) = 4

3,3 = (-1 • (-1)-2 • 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы .
  2. Находим алгебраические дополнения ко всем элементам матрицы .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы .

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай: Обратной, по отношению к единичной матрице , является единичная матрица .

Пример №2. Найти матрицу, обратную матрице .
Решение.
1. Найдем .
2. Ищем алгебраические дополнения каждого элемента матрицы A:
; ; .
Получили алгебраические дополнения элементов первой строки. Аналогично для элементов второй и третьей строк получаем:
; ; .
; ; .
Объединяя 3 и 4 пункты, получаем обратную матрицу
.
Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу .

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *