Экстремум функции

Отыскание локальных максимумов и минимумов не обходится без дифференцирования и является необходимым при исследовании функции и построении ее графика.

Точка называется точкой локального максимума (или минимума) функции, сли существует такой окрестность этой точки, принадлежащий области определения функции, и для всех из этого окрестности выполняется неравенство (или ).

Точки максимума и минимума называются точками экстремума функции, а значения функции в экстремальных точках — ее экстремальными значениями.

НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА:

Если функция имеет в точке локальный экстремум, то либо производная равна нулю , либо не существует.

Точки которые удовлетворяют выписанным выше требованиям называют критическими точками.

Однако в каждой критической точке функция имеет экстремум. Ответ на вопрос: будет критическая точка точкой экстремума дает следующая теорема.

ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМУМА ФУНКЦИИ

Теорема І. Пусть функция непрерывна в некотором интервале, содержащем критическую точку и дифференцированная во всех точках этого интервала (за исключением, возможно, самой точки ).

Тогда для точки функция имеет максимум, если для аргументов выполняется условие, что производная больше нуля , а для условие — производная меньше нуля .

Если же для производная меньше нуля , а для больше нуля , то для точки функция имеет минимум.

Теорема ІІ. Пусть функция дважды дифференцируема в окрестности точки и производная равна нулю . Тогда в точке функция имеет локальный максимум, если вторая производная меньше нуля и локальный минимум, если наоборот .

Если же вторая производная равна нулю , то точка может и не быть точкой экстремума.

При исследовании функций на экстремумы используют обе теоремы. Первая на практике проще, поскольку не требует нахождения второй производной.

ПРАВИЛА НАХОЖДЕНИЯ ЕКСТРЕМУМОВ (МАКСИМУМОВ И МИНИМУМОВ) С ПОМОЩЬЮ ПЕРВОЙ ПРОИЗВОДНОЙ

1) найти область определения ;

2) найти первую производную ;

3) найти критические точки;

4) исследовать знак производной на интервалах, которые получили от разбиения критическими точками области определения .

При этом критическая точка является точкой минимума, если при переходе через нее слева направо производная меняет знак с отрицательного на положительный , в противном случаэ является точкой максимума.

Вместо данного правила можно определять вторую производную и исследовать согласно второй теоремы.

5) вычислить значения функции в точках экстремума.

Рассмотрим теперь исследование функции на экстремумы на конкретных примерах.

Примеры.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах"

1. (4.53.7)

1) Областью определения будет множество действительных чисел

;

2) Находим производную

3) Вычисляем критические точки

Они разбивают область определения на следующие интервалы

4) Исследуем знак производной на найденных интервалах методом подстановки значений

Таким образом первая точка является точкой минимума, а вторая — точкой максимума.

5) Вычисляем значение функции

2. (4.53.9)

1) Областью определения будет множество действительных чисел , так корень всегда больше единицы

и функция арктангенс определена на всей действительной оси.

2) Находим производную

3) С условия равенства производной нулю находим критическую точку

Она разбивает область определения на два интервала

4) Определим знак производной в каждой из областей

Таким образом находим, что в критической точке функция принимает минимальное значение.

5) Вычислим экстремум функции

Экстремум функции двух переменных

(4.53.13)

1) Функция определена когда знаменатель не превращается в ноль

Из этого следует, что область определения состоит из трех интервалов

2) Вычисляем производную

3) Приравниваем производную к нулю и находим критические точки.

4) Устанавливаем знак производной в каждой из областей, подстановкой соответствующих значений.

Таким образом точка является точкой локального максимума, а локального минимума. В имеем перегиб функции, но о нем будет больше материала в следующих статьях.

5) Находим значение в критических точках

Несмотря на то, что значение функции , первая точка является точкой локального максимума, а дуга — минимума. Не бойтесь, если у Вас выйдут подобные результаты, при определении локальных экстремумов такие ситуации допустимы.

Посмотреть материалы:

Как найти экстремум (точки минимума и максимума) функции

Дается определение экстремума функции, также приводится пример, как с помощью калькулятор онлайн найти экстремум функции.

Пример

Имеется функция (x^3 -exp(x) + x)/(1+x^2).

Введём её в калькулятор по исследованию функций онлайн:

Получим следующий результат:

Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$- \frac{2 x}{\left(x^{2} + 1\right)^{2}} \left(x + x^{3} — e^{x}\right) + \frac{3 x^{2} — e^{x} + 1}{x^{2} + 1} = 0$$ Решаем это уравнение
Корни этого ур-ния $$x_{1} = 0$$ $$x_{2} = 3.28103090528$$ $$x_{3} = -0.373548376565$$ Зн. экстремумы в точках:
(0, -1)
(3.28103090528, 1.01984828342285)
(-0.373548376565, -0.977554081645009)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках: $$x_{3} = 0$$ Максимумы функции в точках: $$x_{3} = 3.28103090528$$ $$x_{3} = -0.373548376565$$ Убывает на промежутках
(-oo, -0.373548376565] U U

Отыскание локальных максимумов и минимумов не обходится без дифференцирования и является необходимым при исследовании функции и построении ее графика.

Точка называется точкой локального максимума (или минимума) функции, сли существует такой окрестность этой точки, принадлежащий области определения функции, и для всех из этого окрестности выполняется неравенство (или ).

Точки максимума и минимума называются точками экстремума функции, а значения функции в экстремальных точках — ее экстремальными значениями.

НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА:

Если функция имеет в точке локальный экстремум, то либо производная равна нулю , либо не существует.

Точки которые удовлетворяют выписанным выше требованиям называют критическими точками.

Однако в каждой критической точке функция имеет экстремум.

Понятие экстремума функции

Ответ на вопрос: будет критическая точка точкой экстремума дает следующая теорема.

ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМУМА ФУНКЦИИ

Теорема І. Пусть функция непрерывна в некотором интервале, содержащем критическую точку и дифференцированная во всех точках этого интервала (за исключением, возможно, самой точки ).

Тогда для точки функция имеет максимум, если для аргументов выполняется условие, что производная больше нуля , а для условие — производная меньше нуля .

Если же для производная меньше нуля , а для больше нуля , то для точки функция имеет минимум.

Теорема ІІ. Пусть функция дважды дифференцируема в окрестности точки и производная равна нулю . Тогда в точке функция имеет локальный максимум, если вторая производная меньше нуля и локальный минимум, если наоборот .

Если же вторая производная равна нулю , то точка может и не быть точкой экстремума.

При исследовании функций на экстремумы используют обе теоремы. Первая на практике проще, поскольку не требует нахождения второй производной.

ПРАВИЛА НАХОЖДЕНИЯ ЕКСТРЕМУМОВ (МАКСИМУМОВ И МИНИМУМОВ) С ПОМОЩЬЮ ПЕРВОЙ ПРОИЗВОДНОЙ

1) найти область определения ;

2) найти первую производную ;

3) найти критические точки;

4) исследовать знак производной на интервалах, которые получили от разбиения критическими точками области определения .

При этом критическая точка является точкой минимума, если при переходе через нее слева направо производная меняет знак с отрицательного на положительный , в противном случаэ является точкой максимума.

Вместо данного правила можно определять вторую производную и исследовать согласно второй теоремы.

5) вычислить значения функции в точках экстремума.

Рассмотрим теперь исследование функции на экстремумы на конкретных примерах.

Примеры.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах"

1. (4.53.7)

1) Областью определения будет множество действительных чисел

;

2) Находим производную

3) Вычисляем критические точки

Они разбивают область определения на следующие интервалы

4) Исследуем знак производной на найденных интервалах методом подстановки значений

Таким образом первая точка является точкой минимума, а вторая — точкой максимума.

5) Вычисляем значение функции

2. (4.53.9)

1) Областью определения будет множество действительных чисел , так корень всегда больше единицы

и функция арктангенс определена на всей действительной оси.

2) Находим производную

3) С условия равенства производной нулю находим критическую точку

Она разбивает область определения на два интервала

4) Определим знак производной в каждой из областей

Таким образом находим, что в критической точке функция принимает минимальное значение.

5) Вычислим экстремум функции

3. (4.53.13)

1) Функция определена когда знаменатель не превращается в ноль

Из этого следует, что область определения состоит из трех интервалов

2) Вычисляем производную

3) Приравниваем производную к нулю и находим критические точки.

4) Устанавливаем знак производной в каждой из областей, подстановкой соответствующих значений.

Таким образом точка является точкой локального максимума, а локального минимума. В имеем перегиб функции, но о нем будет больше материала в следующих статьях.

5) Находим значение в критических точках

Несмотря на то, что значение функции , первая точка является точкой локального максимума, а дуга — минимума. Не бойтесь, если у Вас выйдут подобные результаты, при определении локальных экстремумов такие ситуации допустимы.

Посмотреть материалы:

Литература

1. Богомолов Н.В. Практические занятия по математике. – М.: Высш. шк., 2009

2. П.Т.Апанасов, М.И.Орлов. Сборник задач по математике. – М.: Высш. шк., 2009

Методические указания

Исследование функций с помощью производной. Нахождение промежутков монотонности

Теорема1. Если функция f(x) определена и непрерывна на промежутке (а;b) и f ‘(x) всюду положительна (f ‘(x)>0), тогда функция возрастает на промежутке (а;b).

Теорема2. Если функция f(x) определена и непрерывна на промежутке (а;b) и f ‘(x) всюду отрицательна (f ‘(x)<0), тогда функция убывает на промежутке (а;b).

Пример1. Исследовать на монотонность у= .

Решение: у’=2х-1

2х-1=0

х=0,5

Числовая ось разбита на два интервала

Значит, функция убывает в промежутке (-;5) и функция возрастает в промежутке (5;).

Нахождение экстремумов функции

Функция f(x) имеет максимум (минимум) в точке х0, если у этой точки существует окрестность, в которой f(x)<f(x0) (f(x)>f(x0)) для хх0.

Максимум и минимум объединяются наименованием экстремум.

Теорема 1.(необходимое условие экстремума). Если точка х0 является точкой экстремума функции у=f(x) и в этой точке существует производная f ‘(x0), то она равна нулю: f ‘(x)=0.

Точки, где f ‘(x)=0 или не существует называются критическими.

Теорема 2.(достаточное условие). Пусть функция f(x) непрерывна в точке х0 и в ее – окрестности имеет производную, кроме, быть может, самой точки х0. Тогда

а) если производная f ‘(x) при переходе через точку х0 меняет знак с плюса на минус, то точка х0 является точкой максимума функции f(x);

б) если производная f ‘(x) при переходе через точку х0 меняет знак с минуса на плюс, то точка х0 является точкой минимума функции f(x);

в) если существует окрестность (х0-; х0+) точки х0, в которой производная f ‘(x) сохраняет свой знак, то в точке х0 данная функция f(x) не имеет экстремума.

Пример 2.Исследовать на экстремум функции у = 3 -5х — .

Решение: у’= -5-2x

-5-2х=0

-2х=5

х= — 2,5

При переходе через точку х= — 2,5 производная у’ меняет знак с «+» на «-» ==> х = -2,5 точка максимума.

Достаточные условия экстремума функции.

xmax= — 2,5; уmax = 9,25.

Дата добавления: 2015-06-10; просмотров: 2978; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:


Отыскание локальных максимумов и минимумов не обходится без дифференцирования и является необходимым при исследовании функции и построении ее графика.

Точка называется точкой локального максимума (или минимума) функции, сли существует такой окрестность этой точки, принадлежащий области определения функции, и для всех из этого окрестности выполняется неравенство (или ).

Точки максимума и минимума называются точками экстремума функции, а значения функции в экстремальных точках — ее экстремальными значениями.

НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА:

Если функция имеет в точке локальный экстремум, то либо производная равна нулю , либо не существует.

Точки которые удовлетворяют выписанным выше требованиям называют критическими точками.

Однако в каждой критической точке функция имеет экстремум. Ответ на вопрос: будет критическая точка точкой экстремума дает следующая теорема.

ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМУМА ФУНКЦИИ

Теорема І. Пусть функция непрерывна в некотором интервале, содержащем критическую точку и дифференцированная во всех точках этого интервала (за исключением, возможно, самой точки ).

Тогда для точки функция имеет максимум, если для аргументов выполняется условие, что производная больше нуля , а для условие — производная меньше нуля .

Если же для производная меньше нуля , а для больше нуля , то для точки функция имеет минимум.

Теорема ІІ. Пусть функция дважды дифференцируема в окрестности точки и производная равна нулю .

Экстремумы функции: признаки существования, примеры решений

Тогда в точке функция имеет локальный максимум, если вторая производная меньше нуля и локальный минимум, если наоборот .

Если же вторая производная равна нулю , то точка может и не быть точкой экстремума.

При исследовании функций на экстремумы используют обе теоремы. Первая на практике проще, поскольку не требует нахождения второй производной.

ПРАВИЛА НАХОЖДЕНИЯ ЕКСТРЕМУМОВ (МАКСИМУМОВ И МИНИМУМОВ) С ПОМОЩЬЮ ПЕРВОЙ ПРОИЗВОДНОЙ

1) найти область определения ;

2) найти первую производную ;

3) найти критические точки;

4) исследовать знак производной на интервалах, которые получили от разбиения критическими точками области определения .

При этом критическая точка является точкой минимума, если при переходе через нее слева направо производная меняет знак с отрицательного на положительный , в противном случаэ является точкой максимума.

Вместо данного правила можно определять вторую производную и исследовать согласно второй теоремы.

5) вычислить значения функции в точках экстремума.

Рассмотрим теперь исследование функции на экстремумы на конкретных примерах.

Примеры.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах"

1. (4.53.7)

1) Областью определения будет множество действительных чисел

;

2) Находим производную

3) Вычисляем критические точки

Они разбивают область определения на следующие интервалы

4) Исследуем знак производной на найденных интервалах методом подстановки значений

Таким образом первая точка является точкой минимума, а вторая — точкой максимума.

5) Вычисляем значение функции

2. (4.53.9)

1) Областью определения будет множество действительных чисел , так корень всегда больше единицы

и функция арктангенс определена на всей действительной оси.

2) Находим производную

3) С условия равенства производной нулю находим критическую точку

Она разбивает область определения на два интервала

4) Определим знак производной в каждой из областей

Таким образом находим, что в критической точке функция принимает минимальное значение.

5) Вычислим экстремум функции

3. (4.53.13)

1) Функция определена когда знаменатель не превращается в ноль

Из этого следует, что область определения состоит из трех интервалов

2) Вычисляем производную

3) Приравниваем производную к нулю и находим критические точки.

4) Устанавливаем знак производной в каждой из областей, подстановкой соответствующих значений.

Таким образом точка является точкой локального максимума, а локального минимума. В имеем перегиб функции, но о нем будет больше материала в следующих статьях.

5) Находим значение в критических точках

Несмотря на то, что значение функции , первая точка является точкой локального максимума, а дуга — минимума. Не бойтесь, если у Вас выйдут подобные результаты, при определении локальных экстремумов такие ситуации допустимы.

Посмотреть материалы:

Высшая математика » Функции нескольких переменных » Экстремум функции двух переменных

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. Составить и решить систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac{\partial^2z}{\partial x^2}$, $\frac{\partial^2z}{\partial x\partial y}$, $\frac{\partial^2z}{\partial y^2}$ и вычислить значение $\Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
  1. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} > 0$ (или $\frac{\partial^2z}{\partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
  2. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} < 0$ (или $\frac{\partial^2z}{\partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
  3. Если $\Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
  4. Если $\Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показать\скрыть

Если $\Delta > 0$, то $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2 > 0$. А отсюда следует, что $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > \left(\frac{\partial^2z}{\partial x\partial y} \right)^2 ≥ 0$. Т.е. $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac{\partial^2z}{\partial x^2} > 0$, то и $\frac{\partial^2z}{\partial y^2} > 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac{\partial^2z}{\partial x^2}$ и $\frac{\partial^2z}{\partial y^2}$ совпадают.

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

Решение

Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=8x-6y-34; \frac{\partial z}{\partial y}=-6x+10y+42. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 8x-6y-34=0;\\ & -6x+10y+42=0. \end{aligned} \right. $$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$ \left \{ \begin{aligned} & 4x-3y=17;\\ & -3x+5y=-21. \end{aligned} \right. $$

Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ \begin{aligned} & \Delta=\left| \begin{array} {cc} 4 & -3\\ -3 & 5 \end{array}\right|=4\cdot 5-(-3)\cdot (-3)=20-9=11;\\ & \Delta_x=\left| \begin{array} {cc} 17 & -3\\ -21 & 5 \end{array}\right|=17\cdot 5-(-3)\cdot (-21)=85-63=22;\\ & \Delta_y=\left| \begin{array} {cc} 4 & 17\\ -3 & -21 \end{array}\right|=4\cdot (-21)-17\cdot (-3)=-84+51=-33.\end{aligned} \\ x=\frac{\Delta_{x}}{\Delta}=\frac{22}{11}=2; \; y=\frac{\Delta_{y}}{\Delta}=\frac{-33}{11}=-3. $$

Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=8; \frac{\partial^2 z}{\partial y^2}=10; \frac{\partial^2 z}{\partial x \partial y}=-6. $$

Вычислим значение $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 8\cdot 10-(-6)^2=80-36=44. $$

Так как $\Delta > 0$ и $\frac{\partial^2 z}{\partial x^2} > 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$ z_{min}=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

Ответ: $(2;-3)$ – точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Решение

Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=3x^2+3y^2-15; \frac{\partial z}{\partial y}=6xy-12. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 3x^2+3y^2-15=0;\\ & 6xy-12=0. \end{aligned} \right. $$

Сократим первое уравнение на 3, а второе – на 6.

$$ \left \{ \begin{aligned} & x^2+y^2-5=0;\\ & xy-2=0. \end{aligned} \right. $$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac{2}{x}$. Подставляя $y=\frac{2}{x}$ в первое уравнение, будем иметь:

$$ x^2+\left(\frac{2}{x} \right)^2-5=0;\\ x^2+\frac{4}{x^2}-5=0;\\ x^4-5x^2+4=0. $$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$ t^2-5t+4=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 1 \cdot 4=9;\\ & t_1=\frac{-(-5)-\sqrt{9}}{2}=\frac{5-3}{2}=1;\\ & t_2=\frac{-(-5)+\sqrt{9}}{2}=\frac{5+3}{2}=4.\end{aligned} $$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac{2}{x}$, получим:

\begin{aligned} & y_1=\frac{2}{x_1}=\frac{2}{1}=2;\\ & y_2=\frac{2}{x_2}=\frac{2}{-1}=-2;\\ & y_3=\frac{2}{x_3}=\frac{2}{2}=1;\\ & y_4=\frac{2}{x_4}=\frac{2}{-2}=-1. \end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=6x; \frac{\partial^2 z}{\partial y^2}=6x; \frac{\partial^2 z}{\partial x \partial y}=6y. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 6x\cdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем: $\Delta(M_1)=36(1^2-2^2)=-108$. Так как $\Delta(M_1) < 0$, то согласно алгоритму в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем: $\Delta(M_2)=36((-1)^2-(-2)^2)=-108$. Так как $\Delta(M_2) < 0$, то согласно алгоритму в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$ \Delta(M_3)=36(2^2-1^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=6\cdot 2=12. $$

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$ \Delta(M_4)=36((-2)^2-(-1)^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4}=6\cdot (-2)=-12. $$

Так как $\Delta(M_4) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4} < 0$, то согласно алгоритму $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$ z_{max}=z(-2;-1)=(-2)^3+3\cdot (-2)\cdot (-1)^2-15\cdot (-2)-12\cdot (-1)+1=29. $$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ:

  • $(2;1)$ – точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ – точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $\Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $\Delta=36\cdot(2^2-1^2)$. Здесь очевидно, что $\Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа 🙂

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Решение

Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=4x^3-4x+4y; \frac{\partial z}{\partial y}=4y^3+4x-4y. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 4x^3-4x+4y=0;\\ & 4y^3+4x-4y=0. \end{aligned} \right. $$

Сократим оба уравнения на $4$:

$$ \left \{ \begin{aligned} & x^3-x+y=0;\\ & y^3+x-y=0. \end{aligned} \right. $$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$ y^3+x-y+(x^3-x+y)=0;\\ y^3+x^3=0; y^3=-x^3; y=-x. $$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$ x^3-x-x=0;\\ x^3-2x=0;\\ x(x^2-2)=0. $$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt{2}$ или $x=\sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt{2}$, $x_3=\sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt{2}$, $y_3=-x_3=-\sqrt{2}$.

Первый шаг решения окончен.

Как найти экстремум (точки минимума и максимума) функции

Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt{2},\sqrt{2})$, $M_3(\sqrt{2},-\sqrt{2})$.

Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=12x^2-4; \frac{\partial^2 z}{\partial y^2}=12y^2-4; \frac{\partial^2 z}{\partial x \partial y}=4. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= (12x^2-4)(12y^2-4)-4^2=\\ =4(3x^2-1)\cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16\cdot((3x^2-1)(3y^2-1)-1). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем: $\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0$. Так как $\Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-\sqrt{2},\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_2)=16\cdot((3\cdot (-\sqrt{2})^2-1)(3\cdot (\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2}=12\cdot (-\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_2) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2} > 0$, то согласно алгоритму $M_2(-\sqrt{2},\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$ z_{min}=z(-\sqrt{2},\sqrt{2})=(-\sqrt{2})^4+(\sqrt{2})^4-2(-\sqrt{2})^2+4\cdot (-\sqrt{2})\sqrt{2}-2(\sqrt{2})^2+3=-5. $$

Аналогично предыдущему пункту исследуем точку $M_3(\sqrt{2},-\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_3)=16\cdot((3\cdot (\sqrt{2})^2-1)(3\cdot (-\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=12\cdot (\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно алгоритму $M_3(\sqrt{2},-\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(\sqrt{2},-\sqrt{2})=(\sqrt{2})^4+(-\sqrt{2})^4-2(\sqrt{2})^2+4\cdot \sqrt{2}(-\sqrt{2})-2(-\sqrt{2})^2+3=-5. $$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается "делайте, что хотите" :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,0)=x^4+0^4-2x^2+4x\cdot 0-2\cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3. $$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ – точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ: $(-\sqrt{2},\sqrt{2})$, $(\sqrt{2},-\sqrt{2})$ – точки минимума функции $z$. В обеих точках $z_{min}=-5$.

Онлайн-занятия по высшей математике

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *