Доминантные рецессивные признаки

Основные понятия генетики

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Тема 2. Законы Менделя из книги «Генетика и селекция»

Книга «Сборник задач по генетике с решениями»

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу. Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Р ♀AA
желтые
× ♂аа
зеленые
Типы гамет А а
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

P ♀Aa
желтые
× ♂Aa
желтые
Типы гамет A a A a
F2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

Купить проверочные работы
и тесты по биологии

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Р ♀Аа
желтые
× ♂aа
зеленые
Типы гамет A a a
F Аа
желтые
50%
аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (21) в соотношении (3 + 1)1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (22) в соотношении (3 + 1)2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (23) в соотношении (3 + 1)3.

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (31), то при дигибридном образуется 9 разных генотипов — 32, при тригибридном скрещивании образуется 33 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а — с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ, Ab, aB, ab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Не знаю как сейчас, а раньше эта табличка была в любом учебнике биологии за курс средней школы.
Можно и в WIKI почитать на тему: Рецессивные и Доминантные признаки высших животных и человека
Таблица доминантных и рецессивных признаков человека
Смысл: Есть Рецессивные и Доминантные гены. У обычных людей мы наблюдаем преобладание Доминантных генов, то есть: черные либо карие глаза, темные, курчавые волосы, большой нос с горбинкой, невысокий рост, смуглая кожа и так далее.
А что такое преобладание Рецессивных генов ? Это когда рождаются дети у близких родственников.
То есть, в обособленно живущей и ни с кем не перемешивающейся этнической группе. Пусть оба родителя будут с преобладанием Доминантных признаков, однако же потомство унаследует рецессивные гены. Потому как рецессивные и доминантные гены есть у любого человека. Это «альбинизм», белая кожа, высокий рост, голубые или серые глаза, светлые, либо рыжие волосы, если говорить про мужчин, то это будут блондины с голубыми глазами и аналогичного вида девушки.
Недостаток только один, быстрое вырождение вследствии накопления многочисленных наследственных заболеваний, хотя только в том случае, если эти наследственные болезни присутствуют.
Потому рекомендуется, брать себе жену или мужа из места отдаленного от вашего на несколько тысяч километров, что бы эти «плохие гены» (если они есть), каким либо образом не вылезли (не сработали).
Таким образом, на планете Земля, как правило, никогда бы не выжили отдельные группы которые никогда и ни с кем не перемешивались. Наука.

Генетическая таблица, показывающая простое взаимодействие доминантных и рецессивных характеристик по Менделю

Обозначения:

А — • — доминантный ген от одного родителя

а — o — рецессивный ген от одного родителя

АА — • • — пара доминантных генов, по одному от каждого из родителей

аа — o o — пара рецессивных генов, по одному от родителя

Аа — • o — доминантный ген от одного родителя и рецессивный — от другого, составляющие доминантно — рецессивную пару генов.

Объяснение вариантов:

1. Оба родителя имеют по два доминантных гена, поэтому все их потомки будут «чистыми» по этому признаку — все АА.

2. Один родитель «чистый» по доминантному фактору (АА), другой только выглядит «чистым», но несет рецессивный ген (Аа). Поэтому все потомки будут выглядеть «чистыми» от рецессивного признака, но на самом деле половина потомков будет действительно «чистой», имея по два доминантных гена (АА), вторая половина будет выглядеть «чистой», но каждый из них будет иметь рецессивный ген, т. е. будет его носителем (Аа). Соотношение АА: Аа — 1:1.

3. Один родитель внешне проявляет доминантный признак, но является носителем рецессивного гена (Аа). При спаривании с партнером, который несет два рецессивных гена и, естественно, внешне проявляет этот признак, половина потомков будет подобна первому партнеру (Аа), вторая — второму. Т. о., весь помет будет носителем данного признака, только первые будут скрытыми носителями, а вторые — явными. Это особенно важно понимать для тех случаев, когда признак, определяемый рецессивным геном, особо нежелателен для породы.

4. Оба родителя проявляют доминантный признак, но каждый несет рецессивный, не проявляющий себя, ген. В помете будет одна часть потомков чисто «доминантных», имеющих два А (АА); две части потомков, внешне проявляя доминантный признак и поэтому, не отличаясь от первых, скрыто будут нести и рецессивный признак, имея Аа; одна часть потомков будет проявлять рецессивный признак, имея два рецессивных гена (аа). Т. е., соотношение потомков, проявляющих признак определяемый геном А будет 3:1, а истинное распределение носителей рецессивного и доминантного генов будет следующим: АА: Аа: аа — 1: 2: 1.

5. В этой паре — один родитель «чистый» доминант (АА), другой имеет два рецессивный гена (аа). Весь помет этой пары также будет нести этот признак, и передавать его потомкам дальше в явной форме до тех пор, пока не будут спарены с партнером несущим доминантный ген. В этом случае исход спаривания будет как в паре 3 и 5.

6. Оба родителя проявляют рецессивный признак, так как несут по два рецессивный гена (аа). Весь помет этой пары также будет нести этот признак, и передавать его потомкам дальше в явной форме до тех пор, пока не будут спарены с партнером несущим доминантный ген. В этом случае исход спаривания будет как в паре 3 и 5.

Ожидаемое соотношение расщепления потомков по тому или иному признаку приблизительно оправдывается при помете не менее 16 щенков. Для помета обычного размера — 6–8 щенков — можно говорить лишь о большей или меньшей вероятности проявления признака, определяемого рецессивным геном, для потомков определенной пары производителей с известным генотипом.

Свойства генов

♦ Свойства генов и особенности их проявления в признаках:
■ ген дискретен в своем действии, т.е. обособлен в своей активности от других генов;
■ один ген отвечает за проявление одного строго определенного признака или нескольких признаков (плейотропия);
■ один признак может быть результатом действия нескольких генов (аллельных или неаллельных);
■ ген может усиливать степень проявления признака при увеличении числа его доминантных аллелей;
■ ген может взаимодействовать с другими генами; это приводит к появлению новых признаков;
■ изменение положения гена в хромосоме или влияние факторов внешней среды могут модифицировать его проявление в признаках;
■ ген обладает способностью к мутациям.

Взаимодействие аллельных генов

Взаимодействие генов — явление, когда за один признак отвечает несколько генов (или аллелей).

Аллельное взаимодействие — это взаимодействие аллелей одного и того же гена (за признак отвечает несколько аллелей одного и того же гена).

❖ Типы аллельных взаимодействий:
■ доминирование,
■ неполное доминирование,
■ сверхдоминирование,
■ кодоминирование.

Доминирование — тип взаимодействия двух аллелей одного гена, когда один (доминантный) из них полностью исключает действие другого (рецессивного). Примеры: доминирование у человека темных волос над светлыми, карих глаз над голубыми.

Неполное доминирование — степень активности доминантного аллеля недостаточна для того, чтобы полностью подавить действие рецессивного аллеля и обеспечить полное проявление доминантного признака.

■ В этом случае у гетерозигот формируется промежуточный (по отношению к родительским признакам) признак — имеет место промежуточный характер наследования. Этот признак будет наблюдаться у гибридов первого поколения и гетерозигот второго поколения. Во втором поколении расщепление по фенотипу и генотипу оказывается одинаковым 1:2:1 (одну часть составляет доминантная гомозигота АА с выраженным доминантным признаком, две части составляет гетерозигота Аа с промежуточным признаком и одну часть составляет гомозигота аа с рецессивным признаком).

■ Примеры неполного доминирования: наследование формы (курчавости) волос у человека, масти крупного рогатого скота, окраски цветков у растения ночная красавица (см. таблицу).

Сверхдоминирование — более сильное проявление признака у гетерозиготной особи (Аа), чем у любой из гомозигот (АА и аа).

Кодоминирование — оба аллеля равноценны, не подавляют друг друга и участвуют в определении признака у гетерозиготной особи. Пример: наследование IV группы крови у человека, которая детерминируется одновременным присутствием в генотипе двух кодоминантных генов IА и Iв. Первый из этих генов детерминирует синтез в эритроцитах белка-антигена А, второй — синтез белка-антигена В; наличие обоих этих генов в генотипе приводит к тому, что у людей с IV группой крови эритроциты содержат как белок-антиген А, так и белок-антиген В.

Взаимодействие неаллельных генов

Неаллельное (или межаллельное) взаимодействие — это взаимодействие аллелей разных генов, т.е. генов, располагающихся в негомологичных хромосомах или разных локусах гомологичных хромосом.

■ Неаллельное взаимодействие генов приводит к модификации менделевского расщепления по фенотипу 9 : 3 : 1, т.е. к появлению в потомстве гетерозиготы иных расщеплений, например 9 : 3 : 4; 9 : 6 : 1; 12 : 3 : 1 и др.

❖ Основные типы межаллельных взаимодействий:
■ комплементарность;
■ эпистаз;
■ полимерия.

Замечание: комплементарное и эпистатическое взаимодействия возникают в тех случаях, когда признак контролируется одной парой неаллельных генов.

Комплементарное, или дополнительное, взаимодействие — такой тип межаллельного взаимодействия генов, при котором одновременное присутствие в генотипе гибрида доминантных генов разных аллельных пар приводит к появлению нового признака, отсутствующего у обоих родителей.

Пример: наследование окраски цветков душистого горошка (родительские растения с генотипами А-вв, ааВ- имеют белые цветки, гибриды с генотипом А-В- пурпурные; см. таблицу).

Замечание: знак «-» в формуле генотипа означает, что это место может занимать как доминантный, так и рецессивный аллель.

Объяснение: пурпурный пигмент образуется с помощью специального фермента, который синтезируется только при наличии обоих доминантных генов: как А, так и В. Цветки родительских особей имеют белый цвет, так как в генотипе каждого из них присутствует только один из этих генов.

Во втором поколении при самоопылении, обеспечивающем равновероятное (случайное) образование гамет и зигот разного типа, наблюдается расщепление по фенотипу в соотношении пурпурной и белой окраски цветков как 9 : 7 (9 пурпурных: A-В- и 7 белых: ЗА-Bb, ЗааВ-. 1aabb).

Эпистаз — такой тип межаллельного взаимодействия генов, при котором аллели одного гена подавляют проявление аллельной пары другого гена, и подавляемый признак не проявляется.

Супрессор (или ген-ингибитор) — ген, подавляющий действие других неаллельных генов. Супрессором может быть как доминантный, так и рецессивный ген.

Доминантный эпистаз — эпистаз, в котором супрессором является доминантный ген. При доминантном эпистазе во втором поколении наблюдается расщепление фенотипа 12:3:1 или 13:3.

Рецессивный эпистаз (криптомерия) — эпистаз, в котором супрессором является рецессивный ген. При рецессивном эпистазе во втором поколении наблюдается расщепление по фенотипу 9:3:4.

Пример эпистаза: наследование окраски шерсти у домашних кроликов. Синтез черного пигмента детерминирует рецессивный ген с, доминантная аллель I другого гена является супрессором, подавляя действие гена с. Тогда кролики с генотипами C-I-, ccl-будут белыми, кролики с генотипами C-ii — серыми, а с генотипом ссii — черными.

Многие признаки контролируются двумя и более парами неаллельных генов (называемых в этом случае полимерными).

Полимерия — взаимодействие нескольких неаллельных полимерных генов. При полимерии степень выраженности фенотипического признака часто зависит от числа полимерных генов, ответственных за его проявление. При кумулятивной полимерии действие генов суммируется; примеры: масса тела, молочность крупного рогатого скота, яйценоскость кур, некоторые параметры умственных способностей человека и др. При некумулятивной полимерии степень проявления признака от числа доминантных генов в генотипе не зависит (пример: оперенность ног у кур).

Плейотропия — зависимость нескольких признаков от одного гена. Каждый плейотропный ген оказывает какое-то основное действие, но модифицирует проявление других генов.

Сцепление генов. Опыты Моргана

Сцепленные гены — любые гены, расположенные в одной хромосоме.

Группа сцепления — все гены, расположенные в одной хромосоме.
■ Количество групп сцепления равно числу пар хромосом (т.е. гаплоидному числу хромосом). У человека 46 хромосом, т.е. 23 группы сцепления.
■ Наследование признаков, за которые отвечают гены из одной группы сцепления, не подчиняется законам Менделя.

Первая серия опытов: скрещивание гомозиготной доминантной (BBVV) особи (с серым цветом тела и нормальной длиной крыльев) с гомозиготной рецессивной (bbvv) особью черного цвета с короткими крыльями. Все потомки F1, в соответствии с первым законом Менделя, являются доминантными гетерозиготными (BbVv) особями серого цвета с нормальными крыльями.

Вторая серия опытов: анализирующее скрещивание гибридов первого поколения — гомозиготной рецессивной (черной короткокрылой) самки (bbvv) с дигетерозиготным (серым с нормальными крыльями) самцом (BbVv). Если предположить, что два гена, относящиеся к разным аллельным парам, локализованы в разных хромосомах, то у дигетерозиготы следует ожидать образования (в равных количествах) четырех типов гамет: BV, bV, Bv и bv. Тогда, согласно третьему закону Менделя, в потомстве должны присутствовать четыре разных фенотипа в равном количестве (по 25%). В действительности присутствовали только два фенотипа (в соотношении 1 : 1).

■ Это означает, что доминантные гены В и V, относящиеся к разным аллельным парам, локализованы в одной хромосоме (из пары гомологичных хромосом) и попадают в одну гамету, а оба рецессивных гена в и v локализованы в другой хромосоме и вместе попадают в другую гамету. Поэтому у дигетерозиготного самца мухи-дрозофилы образуется не четыре типа гамет (когда гены расположены в разных хромосомах), а только два: BV (50%) и bv (50%), и, следовательно, потомки F2 будут иметь два сочетания признаков.

Третья серия опытов: проверка предположения о полном сцеплении генов путем анализирующего скрещивания дигетерозиготной (серой с нормальными крыльями) самки (BbVv) из поколения F1 с гомозиготным рецессивным (черным короткокрылым) самцом (bbvv) из родительского поколения. В результате были получены потомки четырех фенотипов в следующем соотношении: по 41,5% особей с серым телом и нормальными крыльями (генотип BbVv) и особей с черным телом и короткими крыльями (генотип bbvv), и по 8,5% серых короткокрылых особей (генотип Bbvv) и черных особей с нормальными крыльями (генотип bbVv).

Отсюда следует, что сцепленные гены, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе, т.е. сцепление может быть неполным. Это связано с явлением кроссинговера. вероятность которого в данном случае составляет 17%.

Кроссинговер

Кроссинговер — явление обмена участками гомологичных хрома-тид в процессе их конъюгации в профазе мейоза I.
■ У гетерозиготных организмов кроссинговер приводит к пере-комбинации генетического материала.
■ Кроссинговер происходит не всегда; его частота зависит от расстояния между генами (подробнее о расстоянии между генами см. ниже).
■ Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.
■ Значение кроссинговера: он позволяет создавать новые комбинации генов и тем самым повысить наследственную изменчивость, необходимую для расширения возможностей адаптации организмов к изменившимся условиям среды.

Рекомбинация — появление новых сочетаний генов в результате кроссинговера, свободного комбинирования хромосом при образовании гамет или при их слиянии в ходе оплодотворения.

Кроссоверные (или рекомбинантные) особи — особи, образующиеся из гамет с новым, полученным путем кроссинговера, сочетанием аллелей.

Закон Моргана (закон сцепленного наследования): гены, расположенные в одной хромосоме (т.е. входящие в одну группу сцепления), наследуются преимущественно, т.е. с наибольшей вероятностью, вместе (сцепленно).

Хромосомная теория наследственности

Хромосомная теории наследственности экспериментально обоснована Т. Морганом с сотрудниками в 1911-1926 гг.

♦ Основные положения хромосомной теории наследственности:
■ гены, ответственные за хранение и передачу наследственной информации, локализованы в определенных участках (локусах) хромосом; различные хромосомы имеют разное число генов;
■ аллельные гены занимают одинаковые локусы в гомологичных хромосомах;
■ в хромосомах гены располагаются в линейной последовательности (друг за другом) и не перекрываются;
■ гены гомологичных хромосом образуют группу сцепления и наследуются преимущественно вместе; число групп сцепления равно гаплоидному набору хромосом (т.е. числу пар гомологичных хромосом);
■ между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
■ вероятность кроссинговера пропорциональна расстоянию между генами в хромосомах.

Генетические карты

Генетическая карта хромосом — схема, на которой отображается взаимное расположение генов, находящихся в одной группе сцепления, с учетом их порядка следования и относительных расстояний между ними.
■ Возможность картирования хромосом основана на постоянстве процента кроссинговера между определенными генами.

Расстояние между генами выражается в морганидах.

■ Одна морганида — такое расстояние между генами, при котором вероятность кроссинговера равна 1 %.

♦ Значение генетических карт:
■ в селекции они позволяют прогнозировать возможность получения организмов с определенными сочетаниями признаков;
■ являются основой для генной инженерии;
■ в медицине используются для диагностики ряда тяжелых наследственных заболеваний человека;
■ сравнение генетических карт разных видов живых организмов помогает установить особенности эволюционного процесса.

Цитоплазматическая наследственность

Цитоплазматическая наследственность — наследственность, связанная с действием генов, находящихся в органоидах цитоплазмы, содержащих ДНК (митохондриях и пластидах).
■ Такие гены способны к автономной репликации и равномерному распределению между дочерними клетками.
■ В передаче признаков цитоплазматическая наследственность имеет второстепенное значение.
■ Цитоплазматическое наследование осуществляется только через материнский организм (в мужских половых клетках цитоплазмы мало и в ней митохондрии и пластиды отсутствуют). Примеры: с мутациями генов, локализованных в митохондриях, связано наследование нарушений в действии дыхательных ферментов у дрожжей; с мутациями генов, локализованных в пластидах, связано, в частности, наследование пестролистности у ряда растений (ночной красавицы, львиного зева и др.).

Метки: генетика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *