25 процентов от 80


Процент показывает сотую часть единицы, которую обозначают с помощью знака «%». Данный показатель используется, чтобы обозначить долю чего-либо к целому. Как посчитать процент от числа еще знали в Древнем Риме. До того, как придумали десятичную систему исчисления, вычисления производились с помощью дробей, которые были кратны 1 к 100. Октавиан Август брал налог в размере одной сотой на товары, которые продавались на аукционе, и назывался Centesima Rerum Venalium. Расчеты с помощью множителей чем-то напоминали вычисление процентов.

При замене валюты в средние века вычисления со знаменателем сто стали более распространенными, а с конца 16 века до начала 17 века такой метод расчета стал использоваться всеми, исходя из материалов, которые содержат арифметические вычисления. Согласно материалам такой метод применяли при расчете прибыли и убытка, процентной ставки, а также при правиле трёх. В семнадцатом веке эта форма вычислений была стандартом для оформления процентных ставок в сотых долях. Понятие процент в Росcии ввел Пётр I. Однако считается, что похожие вычисления начали использовать в Смутное время, в результате первой привязки чеканных монет 1 к 100, когда рубль стоил 10 гривенников, а немного позднее 100 копеек.

Иногда сравнивают две величины не сравнивая их значения, а в процентах. К примеру, цену двух товаров сравнивать не в денежном эквиваленте, а сравнить в процентах насколько цена одного товара превышает цену другого. Если можно определить, насколько один показатель больше или меньше другого, то для сравнения в % необходимо указать, относительно какой величины вычисляется процент. Такое указание иногда не нужно, в том случае, когда говорится, что один показатель больше другого на число процентов, которое больше показателя 100. В таком случае есть один способ найти процент, поделить разность на меньшее из двух чисел и умножить это число на 100.

Как находить процент от числа


Для того, чтобы находить процент от числа, нужно данное число умножить на число процентов и полученное число разделить на сто.

Как найти проценты от числа

как правило, выделяют три основных вида задач на вычисление процентов:

  • Посчитать процент от данного числа. Данное число нужно умножить на указанное число процентов, а затем результат нужно поделить на 100.
  • Определить число по заданному другому числу и его величине в процентах от искомого числа. Данное число нужно поделить на процентное выражение и результат умножить на 100.
  • Определить выражение одного числа от другого в процентах. Первое число нужно поделить на второе и результат умножить на 100.

Как правило, в экономике, где большинство показателей выражают в процентах, изменение таких показателей выражается не в % от исходного показателя, а в процентных пунктах, которые показывают разницу нового и старого значений показателя. К примеру, если в стране индекс деловой активности повысился с 50% до 51%, то его изменения вычисляют подобным образом: (51%-50%)/50= 1/50=2%, что в процентных пунктах составляет 1%.

Следующий пост

Предыдущий пост

Как посчитать процент от суммы чисел в Excel

Программа Microsoft Excel позволяет быстро работать с процентами: находить их, суммировать, прибавлять к числу, рассчитывать процентный прирост, процент от числа, от суммы и т.д. Такие навыки могут пригодиться в самых разнообразных сферах жизни.

В повседневной жизни мы все чаще сталкиваемся с процентами: скидки, кредиты, депозиты и т.д. Поэтому важно уметь их правильно вычислять. Познакомимся поближе с техниками, которые предлагает встроенный инструментарий табличного процессора.

Как посчитать процент от числа в Excel

Перед тем как посчитать проценты от суммы определимся с понятием «процент». Оно имеет латинское происхождение и дословно переводится как «из сотни». Это определенная часть из 100 долей целого.

Математическая формула расчета процентов выглядит следующим образом: (искомая часть / целое число) * 100.

Чтобы найти процент от числа, применяется такой вариант формулы: (число * процент) / 100. Либо перенести запятую в процентах на 2 знака влево и выполнить только умножение. Например, 10% от 100 – это 0,1 * 100 = 10.

Какую именно формулу применить в Excel, зависит от желаемого результата.

Задача №1: Найти, сколько составит 20% от 400.

  1. Делаем активной ячейку, в которой хотим увидеть результат.
  2. В строку формул или сразу в ячейку вводим =A2*B2.

Так как мы сразу применили процентный формат, не пришлось использовать математическое выражение в 2 действия.

Как назначить для ячейки процентный формат? Выбирайте любой удобный для вас способ:

  • ввести сразу число со знаком «%» (ячейка автоматически установит нужный формат);
  • щелкнуть по ячейке правой кнопкой мыши, выбрать «Формат ячеек» — «Процентный»;
  • выделить ячейку и нажать комбинацию горячих клавиш CTRL+SHIFT+5.

Без использования процентного формата в ячейку вводится обычная формула: =A2/100*B2.

Такой вариант нахождения процента от числа тоже применяется пользователями.

Задача №2: Заказано 100 изделий. Доставлено – 20. Найти, сколько процентов заказа выполнено.

  1. Установить для нужной ячейки процентный формат.
  2. Ввести формулу: =B2/A2. Нажать ВВОД.

В этой задаче мы снова обошлись одним действием. Частное не пришлось умножать на 100, т.к. для ячейки назначен процентный формат.

Вводить в отдельную ячейку проценты совсем не обязательно. У нас в одной ячейке может быть число. А во второй – формула нахождения процента от числа (=A2*20%).



Как прибавить проценты к числу в Excel?

В математике мы сначала находим проценты от числа, а потом выполняем сложение. Microsoft Excel выполняет то же самое. Нам нужно правильно ввести формулу.

Задача: Прибавить 20 процентов к числу 100.

  1. Значения вносим в ячейки с соответствующими форматами: число – с числовым (или общим), процент – с процентным.
  2. Вводим формулу: =A2+A2*B2.

Для решения такой же задачи может использоваться и другая формула: =A2*(1+B2).

Как сосчитать проценты от числа?

Разница между числами в процентах в Excel

Пользователю необходимо найти разницу между числовыми значениями в процентном отношении. К примеру, вычислить, насколько увеличилась / уменьшилась цена поставщика, прибыль предприятия, стоимость коммунальных услуг и т.д.

То есть имеется числовое значение, которое с течением времени, в силу обстоятельств поменялось. Чтобы найти разницу в процентах, необходимо использовать формулу:

(«новое» число – «старое» число) / «старое» число * 100%.

Задача: Найти разницу в процентах между «старыми» и «новыми» ценами поставщика.

  1. Сделаем третий столбец «Динамика в процентах». Назначим для ячеек процентный формат.
  2. Поставим курсор в первую ячейку столбца, введем формулу: =(В2-А2)/В2.
  3. Нажмем Enter. И протянем формулу вниз.

Разница в процентном отношении имеет положительное и отрицательное значение. Установление процентного формата позволило упростить исходную формулу расчета.

Разница в процентах между двумя числами в формате ячеек по умолчанию («Общий») вычисляется по следующей формуле: =(B1-A1)/(B1/100).

Как умножить на проценты в Excel

Задача: 10 кг соленой воды содержит 15% соли. Сколько килограммов соли в воде?

Решение сводится к одному действию: 10 * 15% = 10 * (15/100) = 1,5 (кг).

Как решить эту задачу в Excel:

  1. Ввести в ячейку В2 число 10.
  2. Поставить курсор в ячейку C2 и ввести формулу: =В2 * 15%.
  3. Нажать Enter.

Нам не пришлось преобразовывать проценты в число, т.к. Excel отлично распознает знак «%».

Если числовые значения в одном столбце, а проценты – в другом, то в формуле достаточно сделать ссылки на ячейки. Например, =B9*A9.

Расчет процентов по кредиту в Excel

Задача: В кредит взяли 200 000 рублей на год. Процентная ставка – 19%. Погашать будем в течение всего срока равными платежами. Вопрос: какой размер ежемесячного платежа при данных условиях кредитования?

Важные условия для выбора функции: постоянство процентной ставки и сумм ежемесячных платежей. Подходящий вариант функция – «ПЛТ()». Она находиться в разделе «Формулы»-«Финансовые»-«ПЛТ»

  1. Ставка – процентная ставка по кредиту, разделенная на количество периодов начисления процентов (19%/12, или В2/12).
  2. Кпер – число периодов выплат по кредиту (12).
  3. ПС – сумма займа (200 000 р., или В1).
  4. Поля аргументов «БС» и «Тип» оставим без внимания.

Результат со знаком «-», т.к. деньги кредитополучатель будет отдавать.


Процент показывает сотую часть единицы, которую обозначают с помощью знака «%». Данный показатель используется, чтобы обозначить долю чего-либо к целому. Как посчитать процент от числа еще знали в Древнем Риме. До того, как придумали десятичную систему исчисления, вычисления производились с помощью дробей, которые были кратны 1 к 100. Октавиан Август брал налог в размере одной сотой на товары, которые продавались на аукционе, и назывался Centesima Rerum Venalium.

Как найти процент от числа — формула, расчет процентов, как посчитать

Расчеты с помощью множителей чем-то напоминали вычисление процентов.

При замене валюты в средние века вычисления со знаменателем сто стали более распространенными, а с конца 16 века до начала 17 века такой метод расчета стал использоваться всеми, исходя из материалов, которые содержат арифметические вычисления. Согласно материалам такой метод применяли при расчете прибыли и убытка, процентной ставки, а также при правиле трёх. В семнадцатом веке эта форма вычислений была стандартом для оформления процентных ставок в сотых долях. Понятие процент в Росcии ввел Пётр I. Однако считается, что похожие вычисления начали использовать в Смутное время, в результате первой привязки чеканных монет 1 к 100, когда рубль стоил 10 гривенников, а немного позднее 100 копеек.

Иногда сравнивают две величины не сравнивая их значения, а в процентах. К примеру, цену двух товаров сравнивать не в денежном эквиваленте, а сравнить в процентах насколько цена одного товара превышает цену другого. Если можно определить, насколько один показатель больше или меньше другого, то для сравнения в % необходимо указать, относительно какой величины вычисляется процент. Такое указание иногда не нужно, в том случае, когда говорится, что один показатель больше другого на число процентов, которое больше показателя 100. В таком случае есть один способ найти процент, поделить разность на меньшее из двух чисел и умножить это число на 100.

Как находить процент от числа


Для того, чтобы находить процент от числа, нужно данное число умножить на число процентов и полученное число разделить на сто. как правило, выделяют три основных вида задач на вычисление процентов:

  • Посчитать процент от данного числа. Данное число нужно умножить на указанное число процентов, а затем результат нужно поделить на 100.
  • Определить число по заданному другому числу и его величине в процентах от искомого числа. Данное число нужно поделить на процентное выражение и результат умножить на 100.
  • Определить выражение одного числа от другого в процентах. Первое число нужно поделить на второе и результат умножить на 100.

Как правило, в экономике, где большинство показателей выражают в процентах, изменение таких показателей выражается не в % от исходного показателя, а в процентных пунктах, которые показывают разницу нового и старого значений показателя. К примеру, если в стране индекс деловой активности повысился с 50% до 51%, то его изменения вычисляют подобным образом: (51%-50%)/50= 1/50=2%, что в процентных пунктах составляет 1%.

Следующий пост

Предыдущий пост

Как посчитать процент от суммы чисел в Excel

Программа Microsoft Excel позволяет быстро работать с процентами: находить их, суммировать, прибавлять к числу, рассчитывать процентный прирост, процент от числа, от суммы и т.д. Такие навыки могут пригодиться в самых разнообразных сферах жизни.

В повседневной жизни мы все чаще сталкиваемся с процентами: скидки, кредиты, депозиты и т.д. Поэтому важно уметь их правильно вычислять. Познакомимся поближе с техниками, которые предлагает встроенный инструментарий табличного процессора.

Как посчитать процент от числа в Excel

Перед тем как посчитать проценты от суммы определимся с понятием «процент». Оно имеет латинское происхождение и дословно переводится как «из сотни». Это определенная часть из 100 долей целого.

Математическая формула расчета процентов выглядит следующим образом: (искомая часть / целое число) * 100.

Чтобы найти процент от числа, применяется такой вариант формулы: (число * процент) / 100. Либо перенести запятую в процентах на 2 знака влево и выполнить только умножение.

Задачи на проценты. Часть I

Например, 10% от 100 – это 0,1 * 100 = 10.

Какую именно формулу применить в Excel, зависит от желаемого результата.

Задача №1: Найти, сколько составит 20% от 400.

  1. Делаем активной ячейку, в которой хотим увидеть результат.
  2. В строку формул или сразу в ячейку вводим =A2*B2.

Так как мы сразу применили процентный формат, не пришлось использовать математическое выражение в 2 действия.

Как назначить для ячейки процентный формат? Выбирайте любой удобный для вас способ:

  • ввести сразу число со знаком «%» (ячейка автоматически установит нужный формат);
  • щелкнуть по ячейке правой кнопкой мыши, выбрать «Формат ячеек» — «Процентный»;
  • выделить ячейку и нажать комбинацию горячих клавиш CTRL+SHIFT+5.

Без использования процентного формата в ячейку вводится обычная формула: =A2/100*B2.

Такой вариант нахождения процента от числа тоже применяется пользователями.

Задача №2: Заказано 100 изделий. Доставлено – 20. Найти, сколько процентов заказа выполнено.

  1. Установить для нужной ячейки процентный формат.
  2. Ввести формулу: =B2/A2. Нажать ВВОД.

В этой задаче мы снова обошлись одним действием. Частное не пришлось умножать на 100, т.к. для ячейки назначен процентный формат.

Вводить в отдельную ячейку проценты совсем не обязательно. У нас в одной ячейке может быть число. А во второй – формула нахождения процента от числа (=A2*20%).



Как прибавить проценты к числу в Excel?

В математике мы сначала находим проценты от числа, а потом выполняем сложение. Microsoft Excel выполняет то же самое. Нам нужно правильно ввести формулу.

Задача: Прибавить 20 процентов к числу 100.

  1. Значения вносим в ячейки с соответствующими форматами: число – с числовым (или общим), процент – с процентным.
  2. Вводим формулу: =A2+A2*B2.

Для решения такой же задачи может использоваться и другая формула: =A2*(1+B2).

Разница между числами в процентах в Excel

Пользователю необходимо найти разницу между числовыми значениями в процентном отношении. К примеру, вычислить, насколько увеличилась / уменьшилась цена поставщика, прибыль предприятия, стоимость коммунальных услуг и т.д.

То есть имеется числовое значение, которое с течением времени, в силу обстоятельств поменялось. Чтобы найти разницу в процентах, необходимо использовать формулу:

(«новое» число – «старое» число) / «старое» число * 100%.

Задача: Найти разницу в процентах между «старыми» и «новыми» ценами поставщика.

  1. Сделаем третий столбец «Динамика в процентах». Назначим для ячеек процентный формат.
  2. Поставим курсор в первую ячейку столбца, введем формулу: =(В2-А2)/В2.
  3. Нажмем Enter. И протянем формулу вниз.

Разница в процентном отношении имеет положительное и отрицательное значение. Установление процентного формата позволило упростить исходную формулу расчета.

Разница в процентах между двумя числами в формате ячеек по умолчанию («Общий») вычисляется по следующей формуле: =(B1-A1)/(B1/100).

Как умножить на проценты в Excel

Задача: 10 кг соленой воды содержит 15% соли. Сколько килограммов соли в воде?

Решение сводится к одному действию: 10 * 15% = 10 * (15/100) = 1,5 (кг).

Как решить эту задачу в Excel:

  1. Ввести в ячейку В2 число 10.
  2. Поставить курсор в ячейку C2 и ввести формулу: =В2 * 15%.
  3. Нажать Enter.

Нам не пришлось преобразовывать проценты в число, т.к. Excel отлично распознает знак «%».

Если числовые значения в одном столбце, а проценты – в другом, то в формуле достаточно сделать ссылки на ячейки. Например, =B9*A9.

Расчет процентов по кредиту в Excel

Задача: В кредит взяли 200 000 рублей на год. Процентная ставка – 19%. Погашать будем в течение всего срока равными платежами. Вопрос: какой размер ежемесячного платежа при данных условиях кредитования?

Важные условия для выбора функции: постоянство процентной ставки и сумм ежемесячных платежей. Подходящий вариант функция – «ПЛТ()». Она находиться в разделе «Формулы»-«Финансовые»-«ПЛТ»

  1. Ставка – процентная ставка по кредиту, разделенная на количество периодов начисления процентов (19%/12, или В2/12).
  2. Кпер – число периодов выплат по кредиту (12).
  3. ПС – сумма займа (200 000 р., или В1).
  4. Поля аргументов «БС» и «Тип» оставим без внимания.

Результат со знаком «-», т.к. деньги кредитополучатель будет отдавать.

Процент — это сотая часть числа. Запись 1 % означает 0.01 часть денег , объема , чего-то. В школьном курсе сначала изучают три основных типа простых задач на проценты:

Задача 1. Найти указанный процент от заданного числа. Заданное число умножается на указанную величину процентов, а затем полученное произведение делится на 100.

Пример 1. Вклад в Сбербанке России имеет годовой прирост 18 % в рублях. Первоначальная сумма вклада равна 100000 рублей. На сколько вырастет сумма вклада в конце года?
Решение: Выполняем вычисления
100000* 18/100 = 18000 рублей.

Задача 2. Найти число по заданному другому числу или его величиной в процентах от искомого числа. Заданное число делится на процентное выражение, соответствующее числу и результат умножается на 100.

Пример 2. Зарплата у депутата Госдумы в июле составила 254000 рублей. Она соответствует 8% от годовой зарплаты. Какая годовая зарплата у депутата?
Решение: Находим по определению
254000/8*100 = 3175000 рублей.

Депутат Госдумы зарабатывает больше 3 милионов рублей в год. Неплохо, особенно для тех кто не всегда ходит на работу.

Задача 3. Найти процентное отношение одного числа от другого. Первое число делится на второе и результат умножается на 100.

Пример 3.Фольксваген за 2013 продал около 6 миллионов автомобилей, а в 2014 году планирует увеличить продажи до 6.9 миллионов автомобилей. Сколько процентов это составит по отношению к выпуску предыдущего года?

Решение: Проводим расчеты
6.9:6*100 =115 %.

То есть в 2014 году Фольксваген планирует продать на 15 процентов больше автомобилей чем в предыдущем.

Примеры на банковские проценты

Пример 4. Депозит в ВТБ имеет процентную ставку 19.5% в год. На сколько вырастет депозит в размере 80000 рублей, если его продолжить на 2 года?
Решение: Для подсчета дважды воспользуемся первым правилом:
За первый год начисления по депозиту составят
80000*19.5/100=15600 рублей.

Добавим полученное значение до первоначального депозита и выполним такие же вычисления
(80000+15600)*19.5/100=18642 рублей.

Далее не забудьте просуммировать оба значения
15600+18642 =34242 рублей.

Пример 5. Вклад в банке Киев год увеличивается на 20 процентов.

Как считать проценты | Онлайн калькулятор

Укргазбанк проводит акцию во время действия которой можно размещать депозит на 3 месяца под 19 процентов годовых с возможностью пролонгации. Пенсионер планирует положить 9000 грн на один год. В каком банке за год можно получить высшийприрост депозита?
Решение: Для вклада в банке Киев проводим расчет начислений
9000*19/100=1710 грн.

Для вклада в Укргазбанк вычисления несколько сложнее. За первые три месяца начисления по депозиту составят
9000*18/4/100=405 грн.

Здесь выполнено деление на 4, поскольку 3 месяца это четверть года (1/4). За следующие три месяца прирост депозита составит
(9000+405)*18/4/100=423.22 грн.

За 3 период соответственно получим рост на
(9000+405+423.22)*18/4/100=442.27 грн.

За оставшееся время прирост депозита составит
(9000+405+423.22+442.27)*18/4/100=462.17 грн.

Суммарный прирост вклада находим суммированием
405+423.22+442.27+462.17=1732.66 грн.

Несмотря на то что в первом банке процент по депозиту на 1 выше, схема начислений по депозиту во втором банке позволяет получить больше прибыли.

Считаю что из приведенных примеров Вы точно теперь знаете, что такое процент от числа и как его найти. Формулы для вычисления процентов достаточно просты и понятны. Задачи на сложные проценты требуют больших объяснений и вычислений, однако на хороших примерах научиться решать такие задачи может каждый.

На практике люди часто пользуются сотыми частями величин. Например, сотая часть гектара − 1 ар (1 сотка), сотая часть века − 1 год, сотая часть рубля − 1 копейка, сотая часть метра − 1 сантиметр.

Для сотой части величины или числа придумали специальное название − один процент (от лат. pro centum − "на сто") и обозначение − 1 %.

Чтобы найти 1 % величины, надо ее значение разделить на 100.

Например, 1 % от 300 кг равен 3 кг. Действительно, 300 кг : 100 = 3 кг.

Если 1 % составляет 

$\frac{1}{100}$

величины, то, например, 3 % составляет 

$\frac{3}{100}$

величины.

Так, 3 % от 1 км составляют 

$\frac{3}{100}$

километра, т.е. 30 м.

Заметим, что 100 % величины составляет 

$\frac{100}{100}$

величины, т. е. 100 % величины − это вся величина.

Например, если говорят, что работа выполнена на 100 %, то выполнена вся работа; если турист прошел 100 % маршрута, то он прошел весь маршрут.

Если мы хотим показать, как изменилась величина, то это можно сделать с помощью процентов.

Например, если спортивную секцию посещали 12 учащихся, а стали посещать 24, то говорят, что количество членов секции увеличилось на 100 %. Если во время новогодней распродажи мобильный телефон стал стоить в два раза дешевле, то говорят, что его цена снизилась на 50 %.

Вообще, если величина стала в два раза больше, то она увеличилась на 100 % (рис.

Найти процент от числа онлайн

211),

а если величина стала в два раза меньше, то она уменьшилась на 50 % (рис. 212).

Любое количество процентов можно записать в виде десятичной дроби или натурального числа. Для этого нужно число, стоящее перед знаком %, разделить на 100.

Например, 23 % = 0,23; 80 % = 0,80 = 0,8; 300 % = 3.

Также можно выполнить обратное преобразование, т. е. записать десятичную дробь или натуральное число в процентах. Для этого нужно число умножить на 100 и к результату приписать знак %.

Например, 1,4 = 140 %; 0,02 = 2 %; 7 = 700 %.

Часто для того, чтобы иметь более точное представление о величине, удобно выразить ее в процентах. Предположим, что ты в этом полугодии получил девять пятерок по математике − это много или мало? Ответить на этот вопрос нельзя, ведь неизвестно, сколько всего оценок по математике ты получил в этом полугодии и какую часть из них составляют пятерки. А вот если сказать, что в этом полугодии из твоих оценок по математике 90 % − пятерки, то сразу становится понятным: ты очень хорошо знаешь этот предмет.

Пример 1. Клубника содержит 6 % сахара. Сколько килограммов сахара содержится в 15 кг клубники?

Решение.

1) 15 : 100 = 0,15 (кг) − составляет 1% массы всей клубники.

2) 0,15 * 6 = 0,9 (кг) − сахара содержится в 15 кг клубники.

Ответ: 0,9 кг.

Решив эту задачу, мы выяснили, сколько составляют 6 % от числа 15. Такую задачу называют задачей на нахождение процентов от числа.

Рассмотрим еще две подобные задачи.

Пример 2. В магазин завезли 600 кг конфет, печенья и мармелада. 40 % составляли конфеты, 25 % печенье. Сколько килограммов мармелада завезли в магазин?

Решение.

1) 40 + 25 = 65 (%) − составляют конфеты и печенье.

2) 100 − 65 = 35 (%) − составляет мармелад.

3) 600 : 100 = 6 (кг) − составляет 1 % массы завезенного товара.

4) 6 * 35 = 210 (кг) − завезли мармелада.

Ответ: 210 кг.

Пример 3. Вкладчик положил в банк 45000 р. под 9 % годовых. Какая сумма будет у него на счете через год?

Решение.

Первый способ

1) 45000 : 100 = 450 (р.) − составляет 1 % вклада.

2) 450 * 9 = 4050 (р.) − будет начислено процентных денег на конец года.

3) 45000 + 4050 = 49050 (р.) − станет на счете через год.

Второй способ

1) 45000 : 100 = 450 (р.) − составляет 1 % вклада.

2) 100 + 9 = 109 (%) − исходный суммы составят деньги на счете на конец года.

3) 450 * 109 = 49050 (р.) − станет на счете через год.

Ответ: 49050 р.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *