Все о радиации

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Пермская государственная сельскохозяйственная академия

имени академика Д. Н. Прянишникова"

Кафедра биологи и физиологии сельскохозяйственных животных

КОНТРОЛЬНАЯ РАБОТА

по дисциплине "Радиобиология"

Выполнила студентка 4 курса

специальности "Зоотехния" гр. 24 А

шифр З-07-2

Попова Ирина Михайловна

Проверил: профессор

Аксенова В. М.

Пермь 2010

СОДЕРЖАНИЕ:

1. Характеристика радиоактивных излучений……………………………3

2. Метаболизм и токсикология радиоизотопов стронция………………..9

3. Использование радиоактивных изотопов в качестве индикатора «меченых» атомов.

Характеристика радиоактивных излучений.

Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. Радиоактивность – самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Около 20 миллиардов лет назад радиация стала постоянно наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже животные слегка радиоактивны, так как во всякой живой ткани присутствуют в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального явления не прошло еще и ста лет.

Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение.
Резерфорд и английский физик Ф. Содди указали, что испускание α -лучей сопровождается превращением химических элементов, например, превращением радия в радон. В 1913 американский учёный К. Фаянс и Содди независимо сформулировали т. н. правило смещения, характеризующее перемещение нуклида в периодической системе элементов при α-и β -распадах.

Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение — это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.
Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

рис.1Схема эксперимента, иллюстрирующего. отклонение разных видов радиоактивного излучения в магнитном поле

Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

В 1934 французские физики И. и Ф. Жолио-Кюри открыли искусственную радиоактивность, т. е. радиоактивность ядер — продуктов ядерных реакций, которая впоследствии приобрела особенно важное значение. Из общего числа (~2000) известных радиоактивных нуклидов лишь около 300 — природные, а остальные получены в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия. Изучение искусственной радиации привело к открытию новых видов β –распада — позитронному β +-распаду и электронному захвату.В 1939 был обнаружен распад с испусканием запаздывающих нейтронов. В 1940 К. А. Петржак и Г. Н. Флёров открыли спонтанное деление ядер.

Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени среднего числа радиоактивных ядер. Продолжительность жизни радиоактивных ядер характеризуют п е р и од ом п о л у р а-с п а д а T 1/2,(проме-жутком времени, за который число радиоактивных ядер уменьшается в среднем вдвое).

Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными, и тогда образованию стабильных нуклидов предшествует цепочка из нескольких актов радиоактивного распада. Характерными примерами систем, в которых происходят сложные радиоактивные превращения, являются радиоактивные рядыизотопов тяжёлых элементов. Многие радиоактивные ядра могут распадаться по двум или нескольким из перечисленных выше основных типов радиации. В результате конкуренции разных путей распада возникают разветвления радиоактивных превращений. Для природных радиоактивных изотопов характерны разветвления, обусловленные возможностью α-и β — распадов. Для трансурановых элементов наиболее типичны разветвления, связанные с конкуренцией α-(реже β -) распадов и спонтанного деления. У нейтронодефицитных ядер часто наблюдается конкуренция β +-распада и электронного захвата. Для многих ядер с нечётными Z (число протонов) и чётными А (массовое число) оказываются энергетически возможными два противоположных варианта β -распада: β -распад и электронный захват или β — и β +-распады.

Главным объектом исследования ученых был сам атом, вернее его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты» – электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе всего атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом (рис. 2).

рис.2

Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода -8, урана -92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален.

В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они электрически нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и тоже число протонов, но число нейтронов в них может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить, их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона и 146 нейтронов; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу «нуклидов».

Некоторые нуклиды стабильны, т.е. в отсутствие внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. . Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка в конце концов оканчивается стабильным нуклидом свинца (см.

рис. 3). Разумеется, существует много таких цепочек самопроизвольных превращений (распадов) разных нуклидов по разным схемам превращений и их комбинациям.

рис.3

При каждом таком акте распада высвобождается энергия, которая и передается дальше в виде излучения. Можно сказать (хотя это и не совсем строго), что испускание ядром частицы, состоящей из двух протонов и двух нейтронов, – это альфа-излучение: испускание электрона, как в случае распада тория-234, – это бета-излучение. Часто нестабильный нуклид оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию чистой энергии, называемую гамма-излучением (гамма-квантом). Как и в случае рентгеновских лучей (во многом подобных гамма-излучению), при этом не происходит испускания каких-либо частиц.


Ионизирующее излучение (далее  — ИИ) – это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие  приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион – происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц  —  корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.). 

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β—излучение, или, чаще всего, просто β -излучение)  или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения  достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение – еще один вид корпускулярного типа излучений.

Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение — внеядерного происхождения, гамма излучение — продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от — от 10-12 до 10-7 . Источник рентгеновских лучей – рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода – катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки.

Это одно его из свойств, основное для медицины – то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение – то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны.

Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).

Измерение уровня радиационного фона обычно ведется в мкЗв/час (микрозиверт в час) или мкР/час (микрорентген в час). 1мкР/час по биологическому действию примерно равен 0.01 мкЗв/час.

Естественный усредненный радиационный фон обычно лежит в пределах 0.10-0.16 мкЗв/час.

Нормой радиационного фона принято считать значение не превышающее 0.20 мкЗв/час.

Безопасным уровнем для человека считается порог в 0.30 мкЗв/час, т.е.

облучение дозой 0.30 мкЗв в течение часа. При превышении этого уровня рекомендуемое время нахождения в зоне облучения падает пропорционально величине дозы.

Теперь попробуем объяснить это на пальцах. Например, абсолютно безопасное время нахождения в зоне облучения уровнем 0.60 мкЗв/час не должно превышать 30 минут (0.60 в 2 раза больше нормы 0.30, значит время нахождения должно быть меньше в 2 раза или по-другому: предельная часовая доза в 0.30 при облучении уровнем в 0.60 наберется в организме человека уже за полчаса). Второй пример по аналогии, при нахождении человека в зоне 1.2 мкЗв/час время не должно превышать 15 минут и т.д.

В жизни мы часто попадаем под действие ионизирующей радиации, уровни которой часто превышают эти условные пороги.

Например, при прохождении флюорографии человек получает примерно от 50 до 1000 мкЗв разовой дозы облучения в зависимости от аппарата (в течении нескольких секунд), поэтому врачи не рекомендуют проводить флюорографию чаще одного раза в полгода.

В самолете уровень облучения на высоте 10 км может достигать нескольких единиц мкЗв/час, т.е. люди которые часто летают, получают ощутимую годовую дозу облучения (пилоты, стюардессы). Особенно высок уровень облучения у иллюминатора самолета.

 

Читайте также о том, как выбрать дозиметр радиации.

Естественная радиоактивность присутствует повсюду. Ионизирующее излучение есть и в космосе, и на Земле с самого момента её зарождения. Даже человеческий организм немного радиоактивен, и способа избавиться от природной радиации не существует.

Основным источником природного или естественного радиационного фона считается радон, который выделяется из земной коры. Радиоактивный инертный газ задерживается в закрытых помещениях, проникая через щели в фундаментах. Также радионуклиды могут быть в кирпиче и бетоне. Радон может образовываться в процессе сжигания природного газа, он присутствует в воде артезианских скважин.

Как её не назови, но опасности для человека не представляет, так как природная радиация обычно имеет допустимые дозы облучения. Радиоактивность, созданная человеческой деятельностью, может иметь в том числе и смертельную дозу радиации.

 

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного  облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей  Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

 

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком.

Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон.

Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

 

Смертельная доза облучения

Опасность получения смертельной дозы облучения в основном появляется при техногенных авариях или при неправильном хранении радиоактивных отходов. Смертельная доза радиации начинается с 6-7 Зв в час и более. Но даже в небольшой степени, но постоянно повышенный радиационный фон может вызвать мутацию клеток. Риск возникновения онкологических заболеваний можно снизить, используя бытовые дозиметры. Радионуклиды имеют свойство накапливаться. Поэтому следует регулярно проверять окружающий радиационный фон, строительные материалы, природные источники воды.

Человек, который беспокоится о своем здоровье, состоянии окружающей среды и хочет знать показатели радиоактивности в любой нужный момент, покупает для этих целей дозиметр. Однако на практике в первое время могут возникать вопрос: «Как проверить уровень радиации правильно и максимально точно?» Ведь можно оказаться в разных ситуациях и преследовать разнообразные задачи, потому от понимания показаний дозиметра может зависеть жизнь.

То, чем измеряют радиацию понятно всем интересующимся данным вопросом – это дозиметры, которые могут быть бытовыми и профессиональными. Популярный прибор для измерения радиактивности RADEX рекомендован для использования в быту, хотя имеет характеристики, которыми обладают профессиональные приборы. Он обладает всеми нужными функциями и имеет абсолютно понятный процесс измерения. Как говорится, с ним точно не прогадаете.

Перед тем, как на практике проверить измеритель радиации, нужно знать показатели, на которые следует ориентироваться. К ним относятся доза и мощность дозы (МЭД). Разберем подробнее, как пользоваться дозиметром, чтобы узнать эти параметры и правильно проанализировать их.

 

Доза и мощность дозы

Мощность дозы – это характеристика, которая позволяет оценить скорость ионизации вещества под действием излучения. Это скорость, с которой накапливается доза и становится опасной для здоровья или жизни. Измеряется данный параметр в мк3в/ч (микрозивертах за час). Это системная единица измерения.

При измерении мощности дозы с помощью дозиметра или индикатора радиоактивности нужно помнить, что ионизирующее излучение имеет динамический характер, потому показания дозиметра в одних и тех же условиях не всегда показывают одинаковую величину. Именно для этого советуем проверять уровень мощности дозы за 3-5 заходов, не выключая прибор. Что можно понять после измерения мощности дозы? Зная этот параметр, определяют насколько долго можно находиться в анализируемой местности без вреда для здоровья. Чем больше будет ее величина, то и доза будет быстрее накапливаться в определенном месте, предмете и т. д. Превышение порогового значения уровня мощности дозы (уровень которого можно устанавливать индивидуально), в дозиметрах или индикаторах радиоактивности RADEX сопровождается звуковым и вибро сигналом.

 

Как пользоваться дозиметром для измерения дозы?

Если нужно провести измерение дозы излучения, для начала необходимо обнулить показания накопленной дозы дозиметра и положить включенный дозиметр в карман. В каких случаях нужно измерять дозу в быту? Например, в путешествиях по незнакомым местам. Дозу можно назвать естественным фоном, который всегда присутствует в минимальных количествах в окружающей среде.

Максимально допустимая доза для человека в год составляет 2500 мк3в (или 2.5 м3в). Однако бывают места и с 8 м3в либо 10 м3в, в таком случае человеку находиться там опасно для здоровья. Вот почему измерение дозы радиации так важно: можно и не подозревать о радиоактивности местности и подвергаться риску.

 

Особенности измерения альфа, бета и гамма излучений

Теперь разберем разновидности излучений, которые можно измерять с помощью дозиметра или индикатора радиоактивности. Для человека в быту интерес представляют альфа, бета и гамма излучения. Только некоторые приборы могут похвастаться чувствительностью к трем видам излучений. К сожалению, в большинстве дозиметров, чтобы измерить альфа- или бета- излучение, необходимо проводить предварительные процедуры или замеры радиации. Из всей массы дозиметрических приборов, нужно выделить дозиметр RADEX RD1008, который может одновременно измерять два вида излучений, бета- и гамма . В приборе RADEX RD1008 применяются два датчика радиации, один БЕТА-2 чувствителен к альфа-, бета- и гамма излучениям, а второй БЕТА-2М только к гамма- излучению.

Следует помнить, что наиболее опасным считается гамма излучение. При этом и обнаружить его легче. Чтобы проверить на радиацию объект или предмет правильно и максимально точно, нужно прибор подносить как можно ближе к объекту, почти вплотную.

Необходимо также следить, чтобы дозиметр не “испачкался”, например, если пыль или другой мелкодисперсный объект исследований будет с повышенным уровнем радиоактивности, и он попадёт незаметно на корпус дозиметра, тогда показатели будут неверными.

Как же определить альфа излучение? Измерение уровня радиации альфа- излучения удобнее всего осуществлять с помощью прибора RADEX RD1008, поскольку в нем предусмотрен датчик радиации, который чувствует альфа- излучение.

Для этого нужно воспользоваться самой обычной бумагой, сначала произвести измерения накрыв объект листком бумаги, а потом провести измерение того же объекта без бумаги. Дело в том, что бумага останавливает альфа частицы. Если в ходе измерения вы выявили большую разницу в полученных показателях, то это означает наличие существенного количества альфа частиц в образце.

 

Как быстро найти радиоактивный предмет?

Если прибор фиксирует повышенный уровень радиации, значит, есть и источник радиации. Как  выявить радиоактивный предмет? Для поисковой задачи идеально подходит дозиметрRADEX ONE, поскольку у него есть специальный режим измерения СРМ, в котором фиксирует количество радиоактивных частиц, а не делает пересчеты и не просчитывает среднее значение. Поэтому прибор быстро реагирует на малейшие изменения показателей радиоактивности, при попадании в аномальную зону. Наиболее удобно проводить измерение радиации с включенным звуковым сигналом в режиме поиска. Для того чтобы его включить, следует:

  1. зайти в меню, выбрать нужный режим, в данном случае это будет «CPM»;
  2. подтвердить функцию с помощью кнопки «выбор».

Искать место расположения источника излучения нужно перемещая включенный прибор над поверхностью исследуемого объекта. При этом ориентироваться стоит на частоту звуковых сигналов (в настройках меню: порог – отключен, звонок – включен). Чем ближе вы приближаетесь к источнику, тем частота будет возрастать, а по мере удаления – убывать.

Определяем уровень радиации в продуктах питания

Что касается продуктов питания, то источниками радиоактивного излучения могут быть дикорастущие ягоды, грибы и растения. За счет особой пористой структуры именно грибы способны особенно быстро накапливать радиацию в больших количествах. Всем грибникам необычайно важно иметь дозиметр при каждом походе в лес.

Если выявлено превышение дозы хотя бы на 50% больше естественного фона, то лучше пройти мимо. Подобные измерения можно производить на рынке или в магазине. Для определения уровня радиации продуктов питания, нужно только приблизить включённый дозиметр к объекту исследования на расстояние около 1 см. Если приходится иметь дело с жидкостью, то исследование нужно проводить над открытой поверхностью жидкости. Нужно следить, чтобы вода не попала на прибор. Для этого можно использовать полиэтиленовый пакет, но не больше одного слоя.

 

Измерение радиации в доме или квартире

Жилье является тем местом, где мы проводим большую часть жизни. Потому не помешает проверить квартиру на радиацию перед ее покупкой. Да и в процессе проживания нужно регулярно производить измерения, т.к. мы регулярно приносим в дом новые объекты, которые потенциально могут быть радиоактивными. Важно, чтобы фон в квартире или доме не превышал естественный фон, более чем на 0.2-0,3 мк3в/час.

Многие задаются вопросом: «Как проверить уровень радиации в квартире?». Нужно обойти с прибором квартиру, держать дозиметр при этом ближе к стенам или полу. Если обнаружите увеличение его показаний более чем на 0.2-0,3 мк3в/час, остановитесь и попробуйте приближать дозиметр к подозрительному месту и относить его в середину комнаты. Если и при этом показания будут увеличиваться у стены и уменьшаться по мере удаления, значит стена со скрытым источником излучения. Важно провести измерения в разных местах, ведь помимо стен, излучать радиацию могут различные старинные вещи, мебель и другие предметы. Например, подносить дозиметр к стенам в частном доме, где имеется печь из кирпича, нужно на некотором расстоянии от нее. Дело в том, что кирпич может давать повышенный уровень радиоактивности (почти в 2 раза). И чтобы провести измерение правильно, нужно отдалить дозиметр от печки на 40-50 см и постепенно приближать.

 

Особенности измерений на улице или в походе

Не менее важно проводить замеры на улице, ведь источниками радиации могут быть осадки и воздух. Также есть риски повышения уровня радиоактивности, если наблюдается ветер со стороны промышленных предприятий. В условиях мегаполиса излучение может происходить из самых разных источников, порою непредсказуемых. Например, во время транспортировки радиоактивных веществ, в некоторых местах в воздухе можно также выявить повышенную дозу радиации.

Чем могут помочь дозиметрыRADEX в туристических походах? На какие места нужно обращать внимание при поиске места для ночевки? Если вы находитесь в горной местности, то источниками радиации могут быть разные минералы или растения. Перед тем, как разбить лагерь, лучше произвести замеры радиации в нескольких местах.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *